Patents by Inventor Iain R. Dixon

Iain R. Dixon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230298790
    Abstract: A magnet includes a stack of a plurality of superconducting pancake wound coils having a stacking axis normal to a winding direction of the coils. The stack has axial ends and has a stack midplane relative to the stacking axis. A quench detector is provided for detecting a quench in the stack of superconducting pancake wound coils. A plurality of resistance quench heaters (RQH) are distributed symmetrically along the axis with respect to the stack midplane. Control circuitry is provided for controlling the operation of the RQH upon the detection of a quench by the quench detector. A method of quenching a magnet is also disclosed.
    Type: Application
    Filed: March 16, 2023
    Publication date: September 21, 2023
    Inventors: William Denis Markiewicz, Mark D. Bird, Iain R. Dixon, William Scott Marshall, Thomas A. Painter, Peng Xu
  • Publication number: 20230238178
    Abstract: Coils for superconducting magnets and methods of making coils for superconducting magnets and controlling the turn-to-turn contact resistance of coils. The coils include a REBCO superconducting tape coated with a layer of tin-lead solder, co-wound with an oxidized stainless steel tape. The inclusion of tin-lead solder on the REBCO tape and a layer of oxidation on the stainless steel tape advantageously allow for tuning of the turn-to-turn contact resistance of the coil, and advantageously mitigates the effect of repeated pressure cycling on the turn-to-turn contact resistance.
    Type: Application
    Filed: January 20, 2023
    Publication date: July 27, 2023
    Inventors: Jun Lu, Iain R. Dixon, Mark D. Bird, Justin Deterding, Hongyu Bai, Emsley L. Marks, William Denis Markiewicz
  • Patent number: 7015779
    Abstract: A wide bore, high field superconducting magnet. The superconducting magnet has a plurality of superconducting coils impregnated with epoxy and nested within each other. An innermost one of the nested coils has a bore therethrough that defines a bore width of the magnet. The bore width is greater than approximately 100 millimeters. The nested coils are electrically connected in series and cooled to an operating temperature less than approximately 4 degrees K. The magnet also has external reinforcements on the coils that are applied prior to impregnating the coils with epoxy. An active protection circuit protects the coils in response to a quench in the magnet. The protection circuit includes heater elements positioned in thermal contact with the coils prior to impregnating the coils with epoxy. The magnet further has lead supports for supporting the lead wires with epoxy that extend from the coils.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: March 21, 2006
    Assignee: Florida State University
    Inventors: W. Denis Markiewicz, Iain R. Dixon, Charles A. Swenson, W. Scott Marshall, Robert P. Walsh, Thomas Painter, Steven van Sciver
  • Publication number: 20040162222
    Abstract: A wide bore, high field superconducting magnet. The superconducting magnet has a plurality of superconducting coils impregnated with epoxy and nested within each other. An innermost one of the nested coils has a bore therethrough that defines a bore width of the magnet. The bore width is greater than approximately 100 millimeters. The nested coils are electrically connected in series and cooled to an operating temperature less than approximately 4 degrees K. The magnet also has external reinforcements on the coils that are applied prior to impregnating the coils with epoxy. An active protection circuit protects the coils in response to a quench in the magnet. The protection circuit includes heater elements positioned in thermal contact with the coils prior to impregnating the coils with epoxy. The magnet further has lead supports for supporting the lead wires with epoxy that extend from the coils.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 19, 2004
    Applicant: Florida State University Research Foundation
    Inventors: W. Denis Markiewicz, Iain R. Dixon, Charles A. Swenson, W. Scott Marshall, Robert P. Walsh, Thomas Painter, Steven van Sciver
  • Patent number: 6735848
    Abstract: Method of manufacture a wide bore, high field superconducting magnet. The superconducting magnet has a plurality of superconducting coils impregnated with epoxy and nested within each other. An innermost one of the nested coils has a bore therethrough that defines a bore width of the magnet. The bore width is greater than approximately 100 millimeters. The nested coils are electrically connected in series and cooled to an operating temperature less than approximately 4 degrees K. The magnet also has external reinforcements on the coils that are applied prior to impregnating the coils with epoxy. An active protection circuit protects the coils in response to a quench in the magnet. The protection circuit includes heater elements positioned in thermal contact with the coils prior to impregnating the coils with epoxy. The magnet further has lead supports for supporting the lead wires with epoxy that extend from the coils.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: May 18, 2004
    Assignee: FSU Research Foundation, Inc.
    Inventors: W. Denis Markiewicz, Iain R. Dixon, Charles A. Swenson, W. Scott Marshall, Robert P. Walsh, Thomas Painter, Steven van Van Sciver
  • Patent number: 6720552
    Abstract: A magnet for use with a neutron scattering apparatus. The neutron scattering apparatus provides an incident beam of neutrons to a sample under analysis. The magnet has first and second body portions of high conductivity material and has a mid-plane portion there between in which the sample under analysis is positioned. The first and second body portions of the coil are electrically connected to each other via the mid-plane portion of the coil between the body portions of the coil. The conductive mid-plane portion has a split that allows neutron scattering through large angles.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: April 13, 2004
    Assignee: FSU Research Foundation, Inc.
    Inventors: Mark D. Bird, Iain R. Dixon, Yehia Eyssa, Andrei Gavrilin, Scott Gundluch
  • Publication number: 20030127590
    Abstract: A magnet for use with a neutron scattering apparatus. The neutron scattering apparatus provides an incident beam of neutrons to a sample under analysis. The magnet has first and second body portions of high conductivity material and has a mid-plane portion there between in which the sample under analysis is positioned. The first and second body portions of the coil are electrically connected to each other via the mid-plane portion of the coil between the body portions of the coil. The conductive mid-plane portion has a split that allows neutron scattering through large angles.
    Type: Application
    Filed: October 17, 2002
    Publication date: July 10, 2003
    Applicant: FSU Research Foundation, Inc.
    Inventors: Mark D. Bird, Iain R. Dixon, Yehia Eyssa, Andrei Gavrilin, Scott Gundluch