Patents by Inventor Ian Hsu

Ian Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123222
    Abstract: A functional electrical stimulation (FES) device includes electrodes arranged to apply functional electrical stimulation to a body part of the user. FES stimulation is performed by: receiving values of a set of user metrics for the user; receiving a target position of the body part represented as values for a set of body part position measurements; determining a user-specific energization pattern for producing the target position based on the received target position and the received values of the set of user metrics for the user; and energizing the electrodes of the FES device in accordance with the determined user-specific energization pattern. The determination may utilize an FES calibration database with records having fields containing: values of the set of user metrics for reference users; energization patterns; and values of the set of body part position metrics for positions assumed by the body part in response to applying the energization patterns.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 18, 2024
    Inventors: David A. Friedenberg, Po-Hsu Chen, Samuel Colachis, Nicholas Annetta, Douglas E. Boyd, Collin Dunlap, Ian W. Baumgart, Herbert S. Bresler
  • Publication number: 20240071831
    Abstract: An integrated circuit includes laterally adjacent first and second devices. The first device includes a first source or drain region, a first gate structure, and a first inner spacer between the first source or drain region and the first gate structure. The second device includes a second source or drain region, a second gate structure, and a second inner spacer between the second source or drain region and the second gate structure. In an example, the first source or drain region has a width that is at least 1 nanometer different from a width of the second source or drain region, and/or the first inner spacer has a width that is at least 1 nanometer different from a width of the second inner spacer.
    Type: Application
    Filed: August 26, 2022
    Publication date: February 29, 2024
    Applicant: INTEL CORPORATION
    Inventors: Chang Wan Han, Biswajeet Guha, Vivek Thirtha, William Hsu, Ian Yang, Oleg Golonzka, Kevin J. Fischer, Suman Dasgupta, Sameerah Desnavi, Deepak Sridhar
  • Patent number: 10650204
    Abstract: A barcode detection method includes acquiring an image by a camera, acquiring a horizontal gradient and a vertical gradient of each pixel of the image within a region, generating a gradient phase and gradient magnitude of each pixel according to the horizontal gradient and the vertical gradient, performing a binarization process to the gradient magnitude of each pixel of the image within the region for generating a binarized image, vertically and horizontally sampling the binarized image for generating the gray level flip count in a vertical direction and a horizontal direction, locating an image region of a barcode according to the gray level flip count in the vertical direction and the horizontal direction, acquiring a plurality of gradient phases of all pixels within the image region for generating a gradient phase distribution, and generating a barcode format detection result according to the gradient phase distribution.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: May 12, 2020
    Assignee: WELTREND SEMICONDUCTOR INC.
    Inventors: Hsuan-Ying Chen, Hung-Chih Chiang, Ian Hsu
  • Publication number: 20190377918
    Abstract: A barcode detection method includes acquiring an image by a camera, acquiring a horizontal gradient and a vertical gradient of each pixel of the image within a region, generating a gradient phase and gradient magnitude of each pixel according to the horizontal gradient and the vertical gradient, performing a binarization process to the gradient magnitude of each pixel of the image within the region for generating a binarized image, vertically and horizontally sampling the binarized image for generating the gray level flip count in a vertical direction and a horizontal direction, locating an image region of a barcode according to the gray level flip count in the vertical direction and the horizontal direction, acquiring a plurality of gradient phases of all pixels within the image region for generating a gradient phase distribution, and generating a barcode format detection result according to the gradient phase distribution.
    Type: Application
    Filed: August 14, 2018
    Publication date: December 12, 2019
    Inventors: Hsuan-Ying Chen, Hung-Chih Chiang, Ian Hsu
  • Publication number: 20060238855
    Abstract: The present invention provides a method and device for optically extracting discrete features of an object. With this method and device, small regions of interest or features within a relatively large object are optically extracted and collated into a single, condensed image. The condensed image contains all of the features in the original object, but not the parts of the object that are between the features. Thus, the optically extracted features can be viewed at high resolution, but in a limited field of view. Examples of objects that may be optically extracted according to the invention include spots of biomaterial on a biochip, material in wells of a microtiter plate, etc. In addition, this device and method can be used for non-planar objects. In this case, the device and method allow simultaneous visualization of spatially separated features on a surface of a 3-dimensional object.
    Type: Application
    Filed: January 6, 2006
    Publication date: October 26, 2006
    Inventors: John Coller, Michael Fero, Ian Hsu, Ching-Lung Huang