Patents by Inventor Ian J. McLennan

Ian J. McLennan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11369570
    Abstract: A delivery device for a active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders, such as cancer. The delivery device survives for a period of time in the body sufficient to allow for transport and uptake of the delivery device into targeted cells. The degree of crosslinking can provide a desired release profile of the active agent at, near or inside the target cells. The nanoparticles may be made by applying a high shear force in the presence of a cross linker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: June 28, 2022
    Assignee: GREENMARK BIOMEDICAL INC.
    Inventors: Steven Bloembergen, Ian J. McLennan, Nathan Jones, Areet Krsna Ganesh Shermon, Abdel Elsayed, Juewen Liu
  • Publication number: 20210338585
    Abstract: A delivery device for an active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders. The nanoparticles may be made by applying a high shear force in the presence of a crosslinker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water. The biopolymer may be functionalized. The aptamer may be conjugated directly to the cross-linked biopolymers. The active agent may be a drug useful for the treatment of cancer. The delivery device survives for a period of time in the body sufficient to allow for the sustained release of a drug and for the transportation and uptake of the conjugate into targeted cells. However, the biopolymer is biocompatible and resorbable.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Inventors: Steven Bloembergen, Ian J. McLennan, Nathan Jones, Ryan Wagner, Aareet Mahadevan, Abdel Rahman Elsayed, Juewen Liu
  • Publication number: 20190374469
    Abstract: A delivery device for an active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders. The nanoparticles may be made by applying a high shear force in the presence of a crosslinker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water. The biopolymer may be functionalized. The aptamer may be conjugated directly to the cross-linked biopolymers. The active agent may be a drug useful for the treatment of cancer. The delivery device survives for a period of time in the body sufficient to allow for the sustained release of a drug and for the transportation and uptake of the conjugate into targeted cells. However, the biopolymer is biocompatible and resorbable.
    Type: Application
    Filed: April 15, 2019
    Publication date: December 12, 2019
    Inventors: Steven Bloembergen, Ian J. McLennan, Nathan Jones, Ryan Wagner, Aareet Ganesh Shermon, Abdel Rahman Elsayed, Juewen Liu
  • Patent number: 10285943
    Abstract: A delivery device for an active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders. The nanoparticles may be made by applying a high shear force in the presence of a crosslinker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water. The biopolymer may be functionalized. The aptamer may be conjugated directly to the cross-linked biopolymers. The active agent may be a drug useful for the treatment of cancer. The delivery device survives for a period of time in the body sufficient to allow for the sustained release of a drug and for the transportation and uptake of the conjugate into targeted cells. However, the biopolymer is biocompatible and resorbable.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 14, 2019
    Assignee: GreenMark Biomedical Inc.
    Inventors: Steven Bloembergen, Ian J. McLennan, Nathan Jones, Ryan Wagner, Aareet Krsna Ganesh Shermon, Abdel Rahman Elsayed, Juewen Liu
  • Patent number: 9080290
    Abstract: The present invention provides the novel and nonobvious discovery that sugar macromers can be effectively used to provide a new generation of renewable comonomers for bio-synthetic hybrid paper binder systems having a controlled hydrophilic-hydrophobic balance for improved water retention and film forming properties, on machine runnability, offset printability, biodegradability, enhanced recyclability, and other performance attributes.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: July 14, 2015
    Assignee: ECOSYNTHETIX LTD.
    Inventors: Steven Bloembergen, Ian J. McLennan, Do Ik Lee
  • Publication number: 20150025029
    Abstract: A delivery device for a active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders, such as cancer. The delivery device survives for a period of time in the body sufficient to allow for transport and uptake of the delivery device into targeted cells. The degree of crosslinking can provide a desired release profile of the active agent at, near or inside the target cells. The nanoparticles may be made by applying a high shear force in the presence of a cross linker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 22, 2015
    Inventors: Steven Bloembergen, Ian J. McLennan, Nathan Jones, Areet Krsna Ganesh Shermon, Abdel Elsayed, Juewen Liu
  • Publication number: 20130337065
    Abstract: A delivery device for an active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders. The nanoparticles may be made by applying a high shear force in the presence of a crosslinker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water. The biopolymer may be functionalized. The aptamer may be conjugated directly to the cross-linked biopolymers. The active agent may be a drug useful for the treatment of cancer. The delivery device survives for a period of time in the body sufficient to allow for the sustained release of a drug and for the transportation and uptake of the conjugate into targeted cells. However, the biopolymer is biocompatible and resorbable.
    Type: Application
    Filed: December 2, 2011
    Publication date: December 19, 2013
    Applicant: ECOSYNTHETIX LTD.
    Inventors: Steven Bloembergen, Ian J. McLennan, Nathan Jones, Ryan Wagner, Aareet Ganesh Shermon, Abdel Rahman Elsayed, Juewen Liu
  • Publication number: 20130281608
    Abstract: The present invention provides the novel and nonobvious discovery that sugar macromers can be effectively used to provide a new generation of renewable comonomers for bio-synthetic hybrid paper binder systems having a controlled hydrophilic-hydrophobic balance for improved water retention and film forming properties, on machine runnability, offset printability, biodegradability, enhanced recyclability, and other performance attributes.
    Type: Application
    Filed: October 7, 2011
    Publication date: October 24, 2013
    Applicant: ECOSYNTHETIX LTD.
    Inventors: Steven Bloembergen, Ian J. McLennan, Do Ik Lee
  • Publication number: 20130239849
    Abstract: The present invention provides novel biolatex conjugate compositions and methods of production and use thereof. The novel biolatex conjugate compositions comprise a biopolymer-additive complex (prepared by co-extruding a biopolymer feedstock, at least one performance-enhancing additive, and at least one plasticizer under shear forces) reacted with a crosslinking agent under shear forces. The biolatex conjugate compositions exhibit enhanced performance properties for coated paper, paperboard, and other applications using extremely low levels of performance-enhancing additives.
    Type: Application
    Filed: May 9, 2013
    Publication date: September 19, 2013
    Applicant: EcoSynthetix Ltd.
    Inventors: Steven BLOEMBERGEN, Do I. LEE, Ian J. MCLENNAN, Robert H. WILDI, Edward VAN EGDOM
  • Publication number: 20130090467
    Abstract: A delivery device for an active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders. The nanoparticles may be made by applying a high shear force in the presence of a crosslinker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water. The biopolymer may be functionalized. The aptamer may be conjugated directly to the cross-linked biopolymers. The active agent may be a drug useful for the treatment of cancer. The delivery device survives for a period of time in the body sufficient to allow for the sustained release of a drug and for the transportation and uptake of the conjugate into targeted cells. However, the biopolymer is biocompatible and resorbable.
    Type: Application
    Filed: September 13, 2012
    Publication date: April 11, 2013
    Applicant: ECOSYNTHETIX LTD.
    Inventors: Steven BLOEMBERGEN, Ian J. MCLENNAN, Nathan JONES, Ryan WAGNER, Aareet Krsna GANESH SHERMON, Abdel Rahman ELSAYED, Juewen LIU
  • Publication number: 20120141551
    Abstract: A delivery device for an active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders. The nanoparticles may be made by applying a high shear force in the presence of a crosslinker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water. The biopolymer may be functionalized. The aptamer may be conjugated directly to the cross-linked biopolymers. The active agent may be a drug useful for the treatment of cancer. The delivery device survives for a period of time in the body sufficient to allow for the sustained release of a drug and for the transportation and uptake of the conjugate into targeted cells. However, the biopolymer is biocompatible and resorbable.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 7, 2012
    Applicant: ECOSYNTHETIX LTD.
    Inventors: Steven BLOEMBERGEN, Ian J. MCLENNAN, Nathan JONES, Ryan WAGNER, Aareet Krsna GANESH SHERMON, Abdel Rahman ELSAYED, Juewen LIU
  • Publication number: 20100143738
    Abstract: The present invention provides novel biolatex conjugate compositions and methods of production and use thereof. The novel biolatex conjugate compositions comprise a biopolymer-additive complex (prepared by co-extruding a biopolymer feedstock, at least one performance-enhancing additive, and at least one plasticizer under shear forces) reacted with a crosslinking agent under shear forces. The biolatex conjugate compositions exhibit enhanced performance properties for coated paper, paperboard, and other applications using extremely low levels of performance-enhancing additives.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 10, 2010
    Applicant: ECOSYNTHETIX INC.
    Inventors: Steven Bloembergen, Do I. Lee, Ian J. McLennan, Robert H. Wildi, Edward Van Egdom
  • Patent number: 6355734
    Abstract: A method of preparing a resin-fortified polymer emulsion is disclosed. In one embodiment, the method comprises polymerizing at least one monomer in the presence of a surfactant, an initiator, a resin and sugar-based vinyl monomer under emulsion polymerization reaction conditions effective for initiating polymerization, wherein an emulsion polymerization product is formed that comprises a sugar-based vinyl monomer. A composition comprising resin-fortified emulsion polymer comprising a sugar-based vinyl monomer, a resin and at least one emulsion polymerizable monomer is also disclosed. An ink comprising a pigment and a resin-fortified polymer emulsion comprising a sugar-based vinyl monomer, a resin and at least one emulsion polymerizable monomer is also disclosed.
    Type: Grant
    Filed: August 20, 1999
    Date of Patent: March 12, 2002
    Assignee: Ecosynthetix Inc.
    Inventors: Scott E. Cassar, David H. Fishman, Ian J. McLennan, Steven Bloembergen
  • Patent number: 6242593
    Abstract: Copolymers prepared from novel alkyl polyglycoside maleic acid esters and vinyl monomers are biodegradable and repulpable and are useful in adhesives, coatings, sizing agents, toners, retention aids and related polymer resins in paper and paperboard applications, in wood gluing, packaging and other applications.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: June 5, 2001
    Assignee: Ecosynthetix Inc.
    Inventors: Steven Bloembergen, Ian J. McLennan, Ramani Narayan
  • Patent number: 5872199
    Abstract: Copolymers prepared from novel alkyl polyglycoside maleic acid esters and vinyl monomers are biodegradable and repulpable and are useful in adhesives, coatings, sizing agents, toners, retention aids and related polymer resins in paper and paperboard applications, in wood gluing, packaging and other applications.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: February 16, 1999
    Assignee: Lions Adhesives, Inc.
    Inventors: Steven Bloembergen, Ian J. McLennan, Ramani Narayan