Patents by Inventor Ian Michael Godfrey

Ian Michael Godfrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130271824
    Abstract: The invention can include an apparatus for producing optical pulses, comprising an oscillator for producing optical pulses at a first optical pulse repetition frequency, the optical pulses having a first wavelength; a first optical fiber amplifier; a second optical fiber amplifier; a pulse picker located between the first and second optical fiber amplifiers, the pulse picker operable to reduce the optical pulse repetition frequency of optical pulses, wherein the first amplifier amplifies optical pulses at the first optical pulse repetition frequency and the second amplifier amplifies optical pulses at a reduced optical pulse repetition frequency that is less than the first optical pulse repetition frequency; a nonlinear optical fiber receiving amplified optical pulses having the reduced optical pulse repetition frequency and the first wavelength to produce, at the reduced optical pulse frequency, optical pulses that include one or more nonlinearly produced wavelengths different than the first wavelength; and
    Type: Application
    Filed: March 12, 2013
    Publication date: October 17, 2013
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas
  • Publication number: 20130208737
    Abstract: Variable repetition rate and wavelength optical pulse source, comprising a fixed or variable repetition rate source of supercontinuum pulses; a wavelength tunable optical bandpass filter to filter the supercontinuum pulses at two or more wavelengths, wherein said source of supercontinuum pulses and said wavelength tunable optical bandpass filter are configured such that the optical pulse source can provide variable repetition rate and variable wavelength optical pulses including a series of repetition rates with selected wavelength-varying pulse trains.
    Type: Application
    Filed: March 10, 2013
    Publication date: August 15, 2013
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey
  • Publication number: 20130208736
    Abstract: A method of providing supercontinuum illumination in applications involving the excitation of fluorescence, comprising generating, at an optical pump laser, optical pump pulses at a pump pulse repetition rate; selectively controlling with an optical modulator the launch of pump pulses into a nonlinear optical element comprising an optical fiber at a variable, lower repetition rate to thereby selectively control the repetition rate of supercontinuum pulses generated within the optical fiber; and illuminating a sample with supercontinuum pulses to excite fluorescence. The supercontinuum pulses can be wavelength filtered such that the fluorescence is excited with wave length filtered supercontinuum pulses.
    Type: Application
    Filed: March 10, 2013
    Publication date: August 15, 2013
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey
  • Publication number: 20130208738
    Abstract: Optical pulse source for generating optical supercontinuum pulses, comprising an optical pump laser operable to generate optical pump pulses at a pump pulse repetition rate Rf; a nonlinear optical element comprising a microstructured optical fiber arranged to receive the optical pump pulses and configured to spectrally broaden the pump pulses to generate optical supercontinuum pulses; an optical modulator provided between the optical pump laser and the microstructured optical fiber and operable to selectively control the launch of pump pulses into the microstructured optical fiber at a variable, reduced repetition rate Rr=Rf/N, wherein N is a positive integer, to thereby control the repetition rate of optical supercontinuum pulses generated within the nonlinear element; and wherein the optical pulse source is configured to provide a plurality of different repetition rates and nominally identical spectral broadening for the different repetition rates.
    Type: Application
    Filed: March 10, 2013
    Publication date: August 15, 2013
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey
  • Publication number: 20130208739
    Abstract: An optical pulse source for generating optical supercontinuum pulses comprises an optical pump laser operable to generate optical pump pulses at a pump pulse repetition rate Rf; a nonlinear optical element comprising an optical fiber for generating optical supercontinuum pulses; an optical modulator operable to selectively control the launch of pump pulses into the optical fiber at a reduced, lower repetition rate Rr=Rf/N in order to generate optical supercontinuum pulses at a selectable and lower repetition rate; an optical fiber amplifier located between the optical modulator and the optical pump laser; wherein the optical supercontinuum pulses generated by the optical fiber have a supercontinuum spanning from below 450 nm to greater than 2000 nm; wherein the optical pulse source is provided with a microprocessor configured to determine when supercontinuum pulses are delivered; and wherein the optical pulse source is configured to provide an output trigger signal.
    Type: Application
    Filed: March 10, 2013
    Publication date: August 15, 2013
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey
  • Publication number: 20130188241
    Abstract: Optical pulse source comprising optical pump laser for generating optical pump pulses at repetition rate Rf; a nonlinear optical element comprising an optical fiber for generating supercontinuum pulses; a gating device provided operable to selectively control the launch of pump pulses into the optical fiber at a reduced, lower repetition rate Rr=Rf/N in order to generate supercontinuum pulses at different user selectable repetition rates lower than the pump pulse repetition rate; first and second optical amplifiers; wavelength tunable optical bandpass filter; wherein the optical fiber can generate supercontinuum pulses having a supercontinuum spanning from below 450 nm to greater than 2000 nm; and wherein said optical pulse source comprises an all-fiber source wherein said optical pump laser comprises a fiber oscillator, said gating device comprises a fiber coupled optical modulator, and the optical pump pulses are launched into the optical fiber without the use of free space optics.
    Type: Application
    Filed: March 10, 2013
    Publication date: July 25, 2013
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey
  • Patent number: 8379298
    Abstract: A high power short optical pulse source 10 can include a master oscillator 12, preamplifier 14, and pump laser 16 provided within a first enclosure 28 at a first location. The high power short optical pulse source can further include a high power fiber amplifier 20 provided within an optical head 18, which is located at a second location, remote from the first location. The optical head 18 can have a small footprint and can be positioned at the intended target of optical pulses output from the high power short optical pulse source. The large, noisy elements of the high power short optical pulse source 10 are thereby provided away from the application site of the pulses.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: February 19, 2013
    Assignee: Fianium Ltd
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas
  • Publication number: 20120268808
    Abstract: An optical source can include a remote optical head for outputting high power short optical pulses. The optical source can include signal source operable to output short optical pulses; an optical pump light source; an optical head provided at a location remote from the location of the optical signal source; and an optical fibre amplifier having at least its optical output located within the optical head. The source can also include an optical signal delivery fibre arranged to deliver optical pulses from the optical signal source to the optical fibre amplifier and a pump light delivery fibre arranged to deliver optical pump light to the high power optical fibre amplifier.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 25, 2012
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas
  • Publication number: 20100157419
    Abstract: The invention is directed to a high power short optical pulse source 10 comprising a master oscillator 12 and a Ytterbium doped fibre amplifier (YDFA) preamplifier 14, a pump light source 16, an optical head 18, high power optical fibre amplifier means 20, an optical signal delivery fibre 22, and a pump light delivery fibre 24. The master oscillator 12, preamplifier 14, and pump laser 16, together with their associated drive and control electronics, and cooling systems, are provided within a first enclosure 28 at a first location. The high power fibre amplifier means 20 comprises a Ytterbium doped amplifier fibre and a pump signal combiner. The high power fibre amplifier means 20 is provided within the optical head 18, which is located at a second location, remote from the first location. The optical head 18 has a small footprint and can be positioned at the intended target of the optical pulses.
    Type: Application
    Filed: January 18, 2007
    Publication date: June 24, 2010
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas