Patents by Inventor Ian Strider Hunt

Ian Strider Hunt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230343544
    Abstract: A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing encased within a sleeve. The structure of sleeve is formed with enlarged traps or voids in the sleeve that are disposed adjacent various rotating anti-wetting seals/seal surfaces formed between the sleeve and the shaft. The geometry of the traps is formed to retain liquid metal/lubricating fluid within the gap defined by the bearing assembly and to direct to liquid metal flowing outwardly from the gap defined between the sleeve and the shaft away from the rotating anti-wetting seals and back towards the gap. This geometry allows the centrifugal forces exerted on the liquid metal by the rotation of the bearing structure to move the outflowing liquid metal away from the rotating anti-wetting seals to significantly reduce contact of the liquid metal with the seals.
    Type: Application
    Filed: April 26, 2023
    Publication date: October 26, 2023
    Inventors: Ian Strider Hunt, Jace Dowd, Kyle Russell Berndt, Eric Lubar, Andrew Triscari, Ryan Dagen
  • Publication number: 20230343543
    Abstract: A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing encased within a bearing sleeve, one of which rotates relative to the other. The stationary component, e.g., the journal bearing and/or the thrust bearing includes at least one vent groove formed therein that improves the ability of the journal bearing structure to enable gases trapped by the liquid metal within the bearing assembly to escape through the vent groove to the exterior of the X-ray tube. By adding a strategically located channel or vent groove of sufficient size in at least one of the journal bearing or the thrust bearing, the pressures resisted by the seal created between the liquid metal and the vent groove(s) in the bearing components is significantly reduced, allowing escape of the gases to avoid detrimental effects to the operation of the X-ray tube, while maintaining the load carrying capacity of the bearing assembly.
    Type: Application
    Filed: May 1, 2023
    Publication date: October 26, 2023
    Inventors: Ian Strider Hunt, Andrew Thomas Cross
  • Patent number: 11676791
    Abstract: A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing encased within a bearing sleeve, one of which rotates relative to the other. The stationary component, e.g., the journal bearing and/or the thrust bearing includes at least one vent groove formed therein that improves the ability of the journal bearing structure to enable gases trapped by the liquid metal within the bearing assembly to escape through the vent groove to the exterior of the X-ray tube. By adding a strategically located channel or vent groove of sufficient size in at least one of the journal bearing or the thrust bearing, the pressures resisted by the seal created between the liquid metal and the vent groove(s) in the bearing components is significantly reduced, allowing escape of the gases to avoid detrimental effects to the operation of the X-ray tube, while maintaining the load carrying capacity of the bearing assembly.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: June 13, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Ian Strider Hunt, Andrew Thomas Cross
  • Patent number: 11670475
    Abstract: A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing encased within a sleeve. The structure of sleeve is formed with enlarged traps or voids in the sleeve that are disposed adjacent various rotating anti-wetting seals/seal surfaces formed between the sleeve and the shaft. The geometry of the traps is formed to retain liquid metal/lubricating fluid within the gap defined by the bearing assembly and to direct to liquid metal flowing outwardly from the gap defined between the sleeve and the shaft away from the rotating anti-wetting seals and back towards the gap. This geometry allows the centrifugal forces exerted on the liquid metal by the rotation of the bearing structure to move the outflowing liquid metal away from the rotating anti-wetting seals to significantly reduce contact of the liquid metal with the seals.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: June 6, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Ian Strider Hunt, Jace Dowd, Kyle Russell Berndt, Eric Lubar, Andrew Triscari, Ryan Dagen
  • Publication number: 20220351931
    Abstract: A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing encased within a sleeve. The structure of sleeve is formed with enlarged traps or voids in the sleeve that are disposed adjacent various rotating anti-wetting seals/seal surfaces formed between the sleeve and the shaft. The geometry of the traps is formed to retain liquid metal/lubricating fluid within the gap defined by the bearing assembly and to direct to liquid metal flowing outwardly from the gap defined between the sleeve and the shaft away from the rotating anti-wetting seals and back towards the gap. This geometry allows the centrifugal forces exerted on the liquid metal by the rotation of the bearing structure to move the outflowing liquid metal away from the rotating anti-wetting seals to significantly reduce contact of the liquid metal with the seals.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 3, 2022
    Inventors: Ian Strider Hunt, Jace Dowd, Kyle Russell Berndt, Eric Lubar, Andrew Triscari, Ryan Dagen
  • Publication number: 20220270843
    Abstract: A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing encased within a bearing sleeve, one of which rotates relative to the other. The stationary component, e.g., the journal bearing and/or the thrust bearing includes at least one vent groove formed therein that improves the ability of the journal bearing structure to enable gases trapped by the liquid metal within the bearing assembly to escape through the vent groove to the exterior of the X-ray tube. By adding a strategically located channel or vent groove of sufficient size in at least one of the journal bearing or the thrust bearing, the pressures resisted by the seal created between the liquid metal and the vent groove(s) in the bearing components is significantly reduced, allowing escape of the gases to avoid detrimental effects to the operation of the X-ray tube, while maintaining the load carrying capacity of the bearing assembly.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 25, 2022
    Inventors: Ian Strider Hunt, Andrew Thomas Cross
  • Patent number: 11309160
    Abstract: Various methods and systems are provided for an x-ray imaging system. In one example, an x-ray tube of the imaging system includes a rotor with a core forming a continuous unit with at least one of a retention sleeve and a bearing assembly sleeve. The rotor further includes one or more magnets disposed in the core and maintained in place by the retention sleeve.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 19, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Nidhishri Tapadia, Vasile Bogdan Neculaes, Andrew Thomas Cross, Ian Strider Hunt
  • Publication number: 20210350996
    Abstract: Various methods and systems are provided for an x-ray imaging system. In one example, an x-ray tube of the imaging system includes a rotor with a core forming a continuous unit with at least one of a retention sleeve and a bearing assembly sleeve. The rotor further includes one or more magnets disposed in the core and maintained in place by the retention sleeve.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 11, 2021
    Inventors: Nidhishri Tapadia, Vasile Bogdan Neculaes, Andrew Thomas Cross, Ian Strider Hunt
  • Patent number: 11037752
    Abstract: A liquid metal or spiral groove bearing structure for an x-ray tube and associated process for manufacturing the bearing structure is provided in which journal bearing sleeve is formed with a number of structures thereon that function to dissipate heat transmitted to the sleeve during operation of the bearing assembly within the x-ray tube to minimize thermal deformation of the sleeve, thereby minimizing gap size alteration within the bearing assembly. The structures formed within the sleeve are slots disposed within the section of the sleeve in which the highest temperature gradients develop. The slots enable an increase in thermal conductance away from the sleeve while minimizing the stresses created from the deformation of the portion(s) of the sleeve between the slots.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: June 15, 2021
    Assignee: General Electric Company
    Inventors: Ian Strider Hunt, Kevin Shane Kruse
  • Patent number: 11017976
    Abstract: A liquid metal or spiral groove bearing structure for an x-ray tube and associated process for manufacturing the bearing structure is provided in which journal bearing sleeve is formed with a number of structures thereon that function to dissipate heat transmitted to the sleeve during operation of the bearing assembly within the x-ray tube to minimize thermal deformation of the sleeve, thereby minimizing gap size alteration within the bearing assembly. The structures formed within the sleeve are slots disposed within the section of the sleeve in which the highest temperature gradients develop. The slots enable an increase in thermal conductance away from the sleeve while minimizing the stresses created from the deformation of the portion(s) of the sleeve between the slots.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: May 25, 2021
    Assignee: General Electric Company
    Inventors: Ian Strider Hunt, Kevin Shane Kruse
  • Publication number: 20200294754
    Abstract: A liquid metal or spiral groove bearing structure for an x-ray tube and associated process for manufacturing the bearing structure is provided in which journal bearing sleeve is formed with a number of structures thereon that function to dissipate heat transmitted to the sleeve during operation of the bearing assembly within the x-ray tube to minimize thermal deformation of the sleeve, thereby minimizing gap size alteration within the bearing assembly. The structures formed within the sleeve are slots disposed within the section of the sleeve in which the highest temperature gradients develop. The slots enable an increase in thermal conductance away from the sleeve while minimizing the stresses created from the deformation of the portion(s) of the sleeve between the slots.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Inventors: Ian Strider Hunt, Kevin Shane Kruse
  • Publication number: 20200294753
    Abstract: A liquid metal or spiral groove bearing structure for an x-ray tube and associated process for manufacturing the bearing structure is provided in which journal bearing sleeve is formed with a number of structures thereon that function to dissipate heat transmitted to the sleeve during operation of the bearing assembly within the x-ray tube to minimize thermal deformation of the sleeve, thereby minimizing gap size alteration within the bearing assembly. The structures formed within the sleeve are slots disposed within the section of the sleeve in which the highest temperature gradients develop. The slots enable an increase in thermal conductance away from the sleeve while minimizing the stresses created from the deformation of the portion(s) of the sleeve between the slots.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Inventors: Ian Strider Hunt, Kevin Shane Kruse
  • Patent number: 10714297
    Abstract: A liquid metal or spiral groove bearing structure for an x-ray tube and associated process for manufacturing the bearing structure is provided in which journal bearing sleeve is formed with a number of structures thereon that function to dissipate heat transmitted to the sleeve during operation of the bearing assembly within the x-ray tube to minimize thermal deformation of the sleeve, thereby minimizing gap size alteration within the bearing assembly. The structures formed within the sleeve are slots disposed within the section of the sleeve in which the highest temperature gradients develop. The slots enable an increase in thermal conductance away from the sleeve while minimizing the stresses created from the deformation of the portion(s) of the sleeve between the slots.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: July 14, 2020
    Assignee: General Electric Company
    Inventors: Ian Strider Hunt, Kevin Shane Kruse
  • Patent number: 10573484
    Abstract: A structure and method of operation of a journal bearing is disclosed that minimizes contact of the shaft with the sleeve during start up and slow down of rotation of the shaft relative to the sleeve, or vice versa. The bearing assembly includes a gravitational load reduction mechanism with magnets disposed on the sleeve and on the shaft in alignment with one another. The magnet(s) on the shaft interacts with the magnet(s) disposed on the sleeve to provide a force against the pressure of the shaft towards the sleeve generated by gravity on the rotating component. The magnets enable centering of the rotating component within the stationary component during low rotation and non-rotation. This prevents rubbing of the rotating journal bearing component surfaces, e.g., sleeve, against the stationary journal bearing component, e.g., shaft, during assembly, ramp-up, and coast-down when the journal bearing fluid provides minimal or no bearing centering capability.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: February 25, 2020
    Assignee: General Electric Company
    Inventors: Edward Emaci, Ian Strider Hunt, Alexander Ryan, Michael Gorrilla
  • Patent number: 10533608
    Abstract: A ring seal is engaged with a liquid metal bearing assembly and operates to contain metal fluid lubricant leaking through the primary compression seals of a liquid metal bearing to prevent the fluid from entering the high voltage space within the x-ray tube and causing high voltage instability. The ring seal engages the existing configuration for the bearing assembly without deforming the bearing, including effects of thermal expansion and inertial body forces, thus maintaining the tight tolerances for the proper operation of the component parts of the bearing structure. The ring seal retains the leaking liquid metal within the ring seal regardless of the operating state and/or condition of the bearing assembly, such as during operating conditions. i.e., rotation of the bearing assembly or gantry, and non-operating conditions, e.g., shipping and stand-by, and regardless of the corresponding pressures and their locations exerted on the ring seal by the liquid metal.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: Ian Strider Hunt, Andrew Thomas Triscari, Donald Allen, Gregory Steinlage, Michael Scott Hebert
  • Publication number: 20200013577
    Abstract: A liquid metal or spiral groove bearing structure for an x-ray tube and associated process for manufacturing the bearing structure is provided in which journal bearing sleeve is formed with a number of structures thereon that function to dissipate heat transmitted to the sleeve during operation of the bearing assembly within the x-ray tube to minimize thermal deformation of the sleeve, thereby minimizing gap size alteration within the bearing assembly. The structures formed within the sleeve are slots disposed within the section of the sleeve in which the highest temperature gradients develop. The slots enable an increase in thermal conductance away from the sleeve while minimizing the stresses created from the deformation of the portion(s) of the sleeve between the slots.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 9, 2020
    Inventors: Ian Strider Hunt, Kevin Shane Kruse
  • Patent number: 10468223
    Abstract: An X-ray tube is provided. The X-ray tube includes a bearing configured to couple to an anode. The bearing includes a stationary member, a rotary member configured to rotate with respect to the stationary member during operation of the X-ray tube, and a support feature configured to minimize bending moment along a surface of the stationary member to reduce deflection of the stationary member relative to the rotary member due to radial loads during operation of the X-ray tube.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: November 5, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John James McCabe, Michael Scott Hebert, Ian Strider Hunt, Andrew Thomas Triscari, Kevin Shane Kruse, Alxander Thomas Ryan, Adolfo Delgado Marquez
  • Patent number: 10438767
    Abstract: A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing flange encased within a bearing housing or sleeve. The sleeve includes a thrust seal that is engaged with the sleeve in a manner to maintain coaxiality for the rotating liquid metal seal formed in the sleeve about the shaft. The shaft includes a central bore containing a cooling tube that directs coolant within the bore to maximize the heat transfer from the shaft to the coolant, allowing materials with lower thermal conductivities, such as steel, to be used to form the bearing shaft. The thrust flange on the shaft is formed with channel(s) therein that enable the coolant and/or the liquid metal to effect greater heat transfer on the components of the sleeve through the thrust flange, thereby reducing thermal deformation of the bearing components.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: October 8, 2019
    Assignee: General Electric Company
    Inventors: Ian Strider Hunt, Kevin Kruse, Andrew Triscari
  • Publication number: 20190164716
    Abstract: A bearing structure for an X-ray tube is provided that includes a journal bearing shaft with a radially protruding thrust bearing flange encased within a bearing housing or sleeve. The sleeve includes a thrust seal that is engaged with the sleeve in a manner to maintain coaxiality for the rotating liquid metal seal formed in the sleeve about the shaft. The shaft includes a central bore containing a cooling tube that directs coolant within the bore to maximize the heat transfer from the shaft to the coolant, allowing materials with lower thermal conductivities, such as steel, to be used to form the bearing shaft. The thrust flange on the shaft is formed with channel(s) therein that enable the coolant and/or the liquid metal to effect greater heat transfer on the components of the sleeve through the thrust flange, thereby reducing thermal deformation of the bearing components.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventors: Ian Strider Hunt, Kevin Kruse, Andrew Triscari
  • Publication number: 20190139732
    Abstract: An X-ray tube is provided. The X-ray tube includes a bearing configured to couple to an anode. The bearing includes a stationary member, a rotary member configured to rotate with respect to the stationary member during operation of the X-ray tube, and a support feature configured to minimize bending moment along a surface of the stationary member to reduce deflection of the stationary member relative to the rotary member due to radial loads during operation of the X-ray tube.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Inventors: John James McCabe, Michael Scott Hebert, Ian Strider Hunt, Andrew Thomas Triscari, Kevin Shane Kruse, Alxander Thomas Ryan, Adolfo Delgado Marquez