Patents by Inventor Ian W. Hunter

Ian W. Hunter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10483832
    Abstract: An electric drive system including: a rotary motor system including a hub assembly, a first rotating assembly, a second rotating assembly, and a third rotating assembly, wherein the hub assembly defines a rotational axis about which the first rotating assembly, the second rotating assembly, and the third rotating assembly are coaxially aligned and are capable of independent rotational movement independent of each other; a multi-bar linkage mechanism connected to each of the first and third rotating assemblies and connected to the hub assembly and constraining movement of the hub assembly so that the rotational axis of the hub assembly moves along a defined path that is in a transverse direction relative to the rotational axis and wherein the multi-bar linkage mechanism causes the rotational axis of the hub assembly to translate along the defined path in response to relative rotation of the first rotating assembly and the third rotating assembly with respect to each other.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 19, 2019
    Assignee: Indigo Technologies, Inc.
    Inventors: Ian W. Hunter, Timothy A. Fofonoff, Peter G. Madden, Dean Ljubicic, Thomas Moriarty, Scott T. Purchase
  • Patent number: 10476360
    Abstract: An electric motor including: a hub assembly defining a rotational axis; a magnetic rotor assembly; a first coil stator assembly; a second coil stator assembly; and a system of rotor bearings rotatably supporting each of the magnetic rotor assembly, the first coil stator assembly, and the second coil stator assembly on the hub assembly so that each of the magnetic rotor assembly, the first coil stator assembly, and the second coil stator assembly are rotatable about the rotational axis independently of each other.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 12, 2019
    Assignee: Indigo Technologies, Inc.
    Inventors: Ian W. Hunter, Timothy A. Fofonoff, Peter Madden, Dean Ljubicic, Thomas Moriarty, Scott T. Purchase
  • Publication number: 20190337806
    Abstract: Embodiments described herein generally relate to compositions including discrete nanostructures (e.g., nanostructures including a functionalized graphene layer and a core species bound to the functionalized graphene layer), and related articles and methods. A composition may have a coefficient of friction of less than or equal to 0.02. Discrete nanostructures may have a substantially non-planar configuration. A core species may reversibly covalently bind a first portion of a functionalized graphene layer to a second portion of the functionalized graphene layer. Articles, e.g., articles including a plurality of discrete nanostructures and a means for depositing the plurality of discrete nanostructures on a surface, are also provided. Methods (e.g., methods of forming a layer) are also provided, including depositing a composition onto a substrate surface and/or applying a mechanical force to the composition, e.g., such that the composition exhibits a coefficient of friction of less than or equal to 0.02.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Timothy M. Swager, Intak Jeon, Gee Hoon Park, Pan Wang
  • Patent number: 10463276
    Abstract: A device for measuring a mechanical property of a tissue includes a probe configured to perturb the tissue with movement relative to a surface of the tissue, an actuator coupled to the probe to move the probe, a detector configured to measure a response of the tissue to the perturbation, and a controller coupled to the actuator and the detector. The controller drives the actuator using a stochastic sequence and determines the mechanical property of the tissue using the measured response received from the detector. The probe can be coupled to the tissue surface. The device can include a reference surface configured to contact the tissue surface. The probe may include a set of interchangeable heads, the set including a head for lateral movement of the probe and a head for perpendicular movement of the probe. The perturbation can include extension of the tissue with the probe or sliding the probe across the tissue surface and may also include indentation of the tissue with the probe.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 5, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Yi Chen
  • Patent number: 10444007
    Abstract: A spectral imaging system includes an autocorrelator to generate different autocorrelations when the moving reflector in the autocorrelator is at different positions so as to reconstruct spectral images. The system also includes a position measurement system to measure the actual positions of the moving reflector when autocorrelations are taken. These actual locations, instead of the desired locations in conventional methods, are then used to reconstruct the spectral image. This approach can address the misalignment of the moving reflector from its desired location (due to external disturbances, slow actuator dynamics, and other factors) in conventional spectral imaging techniques and allow the development of high-resolution, high-stability, portable imaging spectrometers for the general public.
    Type: Grant
    Filed: January 13, 2018
    Date of Patent: October 15, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Yi Chen Mazumdar, Ian W. Hunter
  • Publication number: 20190285060
    Abstract: A bending actuator and methods for making and using the same. A beam of anisotropic polymer material, such as nylon, characterized by a greater degree of molecular orientation along a longitudinal axis than transverse to the longitudinal axis, has a heating element in thermal contact with at least one of a pair of opposing faces parallel to the longitudinal axis of the beam. The heating element in certain embodiments provides for photothermal activation of the bending actuator.
    Type: Application
    Filed: October 26, 2016
    Publication date: September 19, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Seyed M. Mirvakili, Ian W. Hunter
  • Publication number: 20190261830
    Abstract: An endoscopic imaging system includes a reusable control cabinet having a number of actuators that control the orientation of a lightweight endoscope that is connectable thereto. The endoscope is used with a single patient and is then disposed. The endoscope includes an illumination mechanism, an image sensor and an elongate shaft having one or more lumens located therein. A polymeric articulation joint at the distal end of the endoscope allows the distal end to be oriented by the control cabinet. The endoscope is coated with a hydrophilic coating that reduces its coefficient of friction and because it is lightweight, requires less force to advance it to a desired location within a patient.
    Type: Application
    Filed: May 10, 2019
    Publication date: August 29, 2019
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Michael S. BANIK, Dennis R. BOULAIS, Lucien A. COUVILLON, Albert C.C. CHIN, Ian W. HUNTER
  • Publication number: 20190214243
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Ian W. HUNTER, Brian D. HEMOND, Harold F. HEMOND
  • Publication number: 20190204369
    Abstract: A method of detecting whether a receiver coil is near a transmit coil in a wireless power transfer system (WPTS), the method involving: applying a pseudo-random signal to the transmit coil; while the pseudo-random signal is being applied to the transmit coil, recording one or more signals produced within the WPTS in response to the applied pseudo-random signal; by using the one or more recorded signals, generating a dynamic system model for some aspect of the WPTS; and using the generated dynamic system model in combination with stored training data to determine whether an object having characteristics distinguishing the object as a receiver coil is near the transmit coil.
    Type: Application
    Filed: October 15, 2018
    Publication date: July 4, 2019
    Inventors: Serge R. Lafontaine, Ian W. Hunter
  • Patent number: 10326347
    Abstract: A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: June 18, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Andrew J. Taberner, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Nathan B. Ball
  • Patent number: 10236172
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: March 19, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Brian D. Hemond, Harold F. Hemond
  • Patent number: 10207055
    Abstract: An exemplary embodiment of the invention is a nozzle, for use in an injection device, that projects material at an ultra-high velocity. The nozzle includes an integrally formed body having an interior passageway that has a longitudinal axis. The input of the nozzle is configured to interface with a cartridge, and the output is configured to be placed proximate to a target. The passageway includes a taper, and its path length, from an initial diameter to a position along the passageway where the passageway first reaches a smallest diameter, is at least 0.5 mm. The taper of the passageway defines a shape, in a plane that includes the longitudinal axis, that is a continuous and monotonically decreasing function of distance along the longitudinal axis in a direction of flow through the nozzle.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 19, 2019
    Assignee: Portal Instruments, Inc.
    Inventors: Nikola Kojic, Bridget Hunter-Jones, Ian W. Hunter
  • Patent number: 10195113
    Abstract: A needle-free adaptor for removing liquid from a vial comprises a cannula adapted to piece a septum of a vial, a plurality of legs surrounding the cannula to secure the adaptor to the vial when the cannula has pieced the septum, an elastomeric membrane having a normally closed pinhole orifice, and a conforming surface having an orifice connected to the cannula. The elastomeric membrane has a stable convex shape and is adapted to receive a nozzle of a needle-free device. Pressed against the elastomeric membrane, the nozzle deflects the elastomeric membrane from the convex shape to an unstable or pseudo-stable inverted position against the conforming surface. Buckling of the elastomeric membrane opens the pinhole orifice and enables fluid communication between the vial and the nozzle by interfacing the pinhole orifice with the orifice on the conforming surface.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: February 5, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Ashin P. Modak, Nora Catherine Hogan
  • Patent number: 10159793
    Abstract: An exemplary embodiment of the invention is a nozzle, for use in an injection device, that projects material at an ultra-high velocity. The nozzle includes an integrally formed body having an interior passageway that has a longitudinal axis. The input of the nozzle is configured to interface with a cartridge, and the output is configured to be placed proximate to a target. The passageway includes a taper, and its path length, from an initial diameter to a position along the passageway where the passageway first reaches a smallest diameter, is at least 0.5 mm. The taper of the passageway defines a shape, in a plane that includes the longitudinal axis, that is a continuous and monotonically decreasing function of distance along the longitudinal axis in a direction of flow through the nozzle.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: December 25, 2018
    Assignee: Portal Instruments, Inc.
    Inventors: Nikola Kojic, Bridget Hunter-Jones, Ian W. Hunter
  • Publication number: 20180342917
    Abstract: A magnetic rotor including: a support structure with a rotational axis, with a front side having a first annular region encircling the rotational axis, and with a back side having a second annular region encircling the rotational axis, the support structure having a first array of pockets formed in the front side within the first annular region and encircling the rotational axis, and a second array of pockets formed in the back side within the second annular region and encircling the rotational axis, and wherein the pockets of the first array of pockets are interleaved with the pockets of the second array of pockets; a first plurality of magnets contained within the pockets of the first array of pockets on the first side of the support structure; and a second plurality of magnets contained within the pockets of the second array of pockets on the second side of the support structure, wherein the pockets of the first and second arrays of pockets have obstructions against which the magnets contained within the p
    Type: Application
    Filed: May 9, 2018
    Publication date: November 29, 2018
    Inventors: Ian W. HUNTER, Timothy A. FOFONOFF
  • Patent number: 10134501
    Abstract: Method for connecting two portions of a first electrically conducting polymer with a second polymer. The method includes disposing a solution of a second polymer in a solvent to be in contact with the two portions of the first electrically conducting polymer and allowing the solvent to evaporate leaving the second polymer joining the two portions of the first polymer. The second polymer may be doped to improve its conductivity.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: November 20, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Lauren Montemayor, Eli Travis Paster, Priam Pillai
  • Patent number: 10101370
    Abstract: A method of detecting whether a receiver coil is near a transmit coil in a wireless power transfer system (WPTS), the method involving: applying a pseudo-random signal to the transmit coil; while the pseudo-random signal is being applied to the transmit coil, recording one or more signals produced within the WPTS in response to the applied pseudo-random signal; by using the one or more recorded signals, generating a dynamic system model for some aspect of the WPTS; and using the generated dynamic system model in combination with stored training data to determine whether an object having characteristics distinguishing the object as a receiver coil is near the transmit coil.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: October 16, 2018
    Assignee: Nucleus Systems Inc.
    Inventors: Serge R. Lafontaine, Ian W. Hunter
  • Publication number: 20180226188
    Abstract: Instead of being made from one continuous piece of material, a coil includes multiple flat coil segments that are stacked together and electrically coupled in series. In many embodiments, the coil segments are U-shaped segments, and the segments are arranged so that each segment is rotated (e.g., by 270 degrees) with respect the segment it follows. The stacked coils may then be fastened together using, for example, bolts through the corners of the coil segments. The combined coil segments form a continuous coil.
    Type: Application
    Filed: March 6, 2018
    Publication date: August 9, 2018
    Inventors: Ian W. Hunter, Timothy A. Fofonoff
  • Patent number: 10012609
    Abstract: A sachet includes a first wing made of a flexible material and having a first perimeter region circumscribing a first central region; a second wing made of the flexible material; a hinge connecting the first and second wings along a common boundary; an adhesive material applied to the perimeter region on the first wing; a first electrically conducting electrode formed on the first wing within the central region of the perimeter region; a second electrically conducting electrode formed on the second wing in a region that is opposed to and in alignment with the first contact area on the first wing; an array of contact pads formed on at least one of the first and second wings; first and second conducting traces electrically connecting first and second groups of one or more contact pads among the array of contact pads to the first and second electrodes, respectively.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: July 3, 2018
    Assignee: Nucleus Scientific Inc.
    Inventors: Ian W. Hunter, Grant W. Kristofek, Dean Ljubicic
  • Patent number: 10008339
    Abstract: An energy-storage device is formed from a first and a second yarn, each yarn including a plurality of nanowires including aluminum and/or a transition metal. An anode pad is in contact with the first yarn and a cathode pad is in contact with the second yarn. Alternatively, first and second metallic electrodes may be disposed substantially in parallel, with pluralities of nanowires including aluminum and/or a transition metal extending therefrom. In another embodiment, a supercapacitor may include a niobium yarn including a plurality of niobium nanowires. Each niobium nanowire may include at least (i) a first section comprising at least one of unoxidized niobium and niobium oxide; (ii) a second section comprises a niobium pentoxide layer; and (iii) a third section comprises a layer formed by dipping the niobium nanowire in at least one of a conductive polymer and a liquid metal.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: June 26, 2018
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Seyed M. Mirvakili, Ian W. Hunter