Patents by Inventor Ian Young

Ian Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230243875
    Abstract: A time alignment method for a differential protection device, the differential protection device and a differential protection system are disclosed. The time alignment method includes obtaining a plurality of current sampled values and a count value of each current sampled values; resampling the plurality of current sampled values with sampling frequency of J points/cycle to obtain a plurality of current resampled values; and performing Fourier transform on the plurality of current resampled values to obtain a plurality of temporally arranged current Fourier values, the plurality of current Fourier values includes a reference current Fourier value corresponding to the sampling moment of the current sampled value whose count value is the first value in the plurality of current sampled values, and the reference current Fourier value is determined based on the reference current resampled value and the J?1 current resampled values that temporally arranged before the reference current resampled value.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 3, 2023
    Applicant: Schneider Electric Industries SAS
    Inventors: Yansong Gao, Ian Young, Xuedi Liang, Yong Wei
  • Publication number: 20230246438
    Abstract: Provided are a data alignment method, a differential protector, and a differential protection system. The data alignment method comprises: obtaining first sampled current data from a first sampling device; receiving a second message from a second differential protector, the second message comprising second sampled current data and its sampling time stamp, first time information of the second differential protector related to a difference in time of reception from receipt of the first message to a second time node, and second time information of the second differential protector related to a second transmission processing delay from the second time node to transmission of the second message; when time synchronization is maintained, calculating and storing a time calculation deviation between a third time node and a first calculated value of the second time node; when time synchronization is lost, determining the third time node according to the stored time calculation deviation.
    Type: Application
    Filed: January 23, 2023
    Publication date: August 3, 2023
    Applicant: Schneider Electric Industries SAS
    Inventors: Ian Young, Yansong Gao, Xuedi Liang, Yong Wei
  • Publication number: 20230238444
    Abstract: Describe is a resonator that uses ferroelectric (FE) materials in the gate of a transistor as a dielectric. The use of FE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, FE material expands or contacts depending on the applied electric field on the gate of the transistor. As such, acoustic waves are generated by switching polarization of the FE materials. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above the FE based transistor.
    Type: Application
    Filed: April 3, 2023
    Publication date: July 27, 2023
    Applicant: Intel Corporation
    Inventors: Tanay Gosavi, Chia-ching Lin, Raseong Kim, Ashish Verma Penumatcha, Uygar Avci, Ian Young
  • Patent number: 11695051
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate and a FinFET transistor on the substrate. The FinFET transistor includes a fin structure having a channel area, a source area, and a drain area. The FinFET transistor further includes a gate dielectric area between spacers above the channel area of the fin structure and below a top surface of the spacers; spacers above the fin structure and around the gate dielectric area; and a metal gate conformally covering and in direct contact with sidewalls of the spacers. The gate dielectric area has a curved surface. The metal gate is in direct contact with the curved surface of the gate dielectric area. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Ashish Penumatcha, Seung Hoon Sung, Scott Clendenning, Uygar Avci, Ian A. Young, Jack T. Kavalieros
  • Patent number: 11696514
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Publication number: 20230200081
    Abstract: Described herein are integrated circuit devices formed using perovskite materials. Perovskite materials with a similar crystal structure and different electrical properties can be layered to realize a transistor or memory device. In some embodiments, a ferroelectric perovskite can be incorporated into a device with other perovskite films to form a ferroelectric memory device.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, John J. Plombon, Dmitri E. Nikonov, Kevin P. O'Brien, Ian A. Young, Matthew V. Metz, Chia-Ching Lin, Scott B. Clendenning, Punyashloka Debashish, Carly Lorraine Rogan, Brandon Jay Holybee, Kaan Oguz
  • Patent number: 11664305
    Abstract: An interconnect structure is disclosed. The interconnect structure includes a first line of interconnects and a second line of interconnects. The first line of interconnects and the second line of interconnects are staggered. The individual interconnects of the second line of interconnects are laterally offset from individual interconnects of the first line of interconnects. A dielectric material is adjacent to at least a portion of the individual interconnects of at least one of the first line of interconnects and the second line of interconnects.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventors: Kevin Lai Lin, Manish Chandhok, Miriam Reshotko, Christopher Jezewski, Eungnak Han, Gurpreet Singh, Sarah Atanasov, Ian A. Young
  • Patent number: 11665975
    Abstract: An apparatus is provided which comprises: a bit-line; a first word-line; a second word-line; and a source-line; a magnetic junction comprising a free magnet; an interconnect comprising spin orbit material, wherein the interconnect is adjacent to the free magnet of the magnetic junction; and a first device (e.g., a selector device) coupled at one end of the interconnect and to the second word-line; and a second device coupled to the magnetic junction, the first word-line and the source-line.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Chia-Ching Lin, Sasikanth Manipatruni, Ian Young
  • Patent number: 11651203
    Abstract: Embodiments may relate to a structure to be used in a neural network. A first column and a second column, both of which are to couple with a substrate. A capacitor structure may be electrically coupled with the first column. An insulator-metal transition (IMT) structure may be coupled with the first column such that the capacitor structure is electrically positioned between the IMT structure and the first column. A resistor structure may further be electrically coupled with the IMT structure and the second column such that the resistor structure is electrically positioned between the second column and the IMT structure. Other embodiments may be described or claimed.
    Type: Grant
    Filed: December 18, 2021
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Dmitri E. Nikonov, Elijah V. Karpov, Ian A. Young
  • Patent number: 11646374
    Abstract: Embodiments herein describe techniques for a semiconductor device including a gate stack with a ferroelectric-oxide layer above a channel layer and in contact with the channel layer, and a top electrode above the ferroelectric-oxide layer. The ferroelectric-oxide layer includes a domain wall between an area under a nucleation point of the top electrode and above a separation line of the channel layer between an ON state portion and an OFF state portion of the channel layer. A resistance between a source electrode and a drain electrode is modulated in a range between a first resistance value and a second resistance value, dependent on a position of the domain wall within the ferroelectric-oxide layer, a position of the ON state portion of the channel layer, and a position of the OFF state portion of the channel layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Ashish Verma Penumatcha, Tanay Gosavi, Uygar Avci, Ian A. Young
  • Patent number: 11646356
    Abstract: Describe is a resonator that uses anti-ferroelectric (AFE) materials in the gate of a transistor as a dielectric. The use of AFE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, additional current drive is also achieved from the piezoelectric response generated to due to AFE material. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above or below the AFE based transistor. Increased drive signal from the AFE results in larger output signal and larger bandwidth.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Chia-ching Lin, Raseong Kim, Ashish Verma Penumatcha, Uygar Avci, Ian Young
  • Patent number: 11640984
    Abstract: Techniques and mechanisms for providing electrical insulation or other protection of an integrated circuit (IC) device with a spacer structure which comprises an (anti)ferromagnetic material. In an embodiment, a transistor comprises doped source or drain regions and a channel region which are each disposed in a fin structure, wherein a gate electrode and an underlying dielectric layer of the transistor each extend over the channel region. Insulation spacers are disposed on opposite sides of the gate electrode, where at least a portion of one such insulation spacer comprises an (anti)ferroelectric material. Another portion of the insulation spacer comprises a non-(anti)ferroelectric material. In another embodiment, the two portions of the spacer are offset vertically from one another, wherein the (anti)ferroelectric portion forms a bottom of the spacer.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Chia-Ching Lin, Owen Loh, Seung Hoon Sung, Aditya Kasukurti, Sou-Chi Chang, Tanay Gosavi, Ashish Verma Penumatcha
  • Patent number: 11637191
    Abstract: Describe is a resonator that uses ferroelectric (FE) materials in the gate of a transistor as a dielectric. The use of FE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, FE material expands or contacts depending on the applied electric field on the gate of the transistor. As such, acoustic waves are generated by switching polarization of the FE materials. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above the FE based transistor.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: April 25, 2023
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Chia-ching Lin, Raseong Kim, Ashish Verma Penumatcha, Uygar Avci, Ian Young
  • Patent number: 11626451
    Abstract: A magnetic memory device comprising a plurality of memory cells is disclosed. The memory device includes an array of memory cells where each memory cell includes a first material layer having a ferromagnetic material, a second material layer having ruthenium, and a third material layer having bismuth and/or antimony. The second material layer is sandwiched between the first material layer and the third material in a stacked configuration.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 11, 2023
    Assignee: Intel Corporation
    Inventors: Emily Walker, Carl H. Naylor, Kaan Oguz, Kevin L. Lin, Tanay Gosavi, Christopher J. Jezewski, Chia-Ching Lin, Benjamin W. Buford, Dmitri E. Nikonov, John J. Plombon, Ian A. Young, Noriyuki Sato
  • Patent number: 11626475
    Abstract: An improved trench capacitor structure is disclosed that allows for the formation of narrower capacitors. An example capacitor structure includes a first conductive layer on the sidewalls of an opening through a thickness of a dielectric layer, a capacitor dielectric layer on the first conductive layer, a second conductive layer on the capacitor dielectric layer, and a conductive fill material on the second conductive layer. The capacitor dielectric layer laterally extends above the opening and along a top surface of the dielectric layer, and the conductive fill material fills a remaining portion of the opening.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: April 11, 2023
    Assignee: Intel Corporation
    Inventors: Nazila Haratipour, Chia-Ching Lin, Sou-Chi Chang, Ian A. Young, Uygar E. Avci, Jack T. Kavalieros
  • Patent number: 11621391
    Abstract: A memory device comprises an interconnect comprises a spin orbit coupling (SOC) material. A free magnetic layer is on the interconnect, a barrier material is over the free magnetic layer and a fixed magnetic layer is over the barrier material, wherein the free magnetic layer comprises an antiferromagnet. In another embodiment, memory device comprises a spin orbit coupling (SOC) interconnect and an antiferromagnet (AFM) free magnetic layer is on the interconnect. A ferromagnetic magnetic tunnel junction (MTJ) device is on the AFM free magnetic layer, wherein the ferromagnetic MTJ comprises a free magnet layer, a fixed magnet layer, and a barrier material between the free magnet layer and the fixed magnet layer.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 4, 2023
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Kaan Oguz, Ian A. Young
  • Publication number: 20230098594
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related MIM capacitors that have a multiple trench structure to increase a charge density, where a dielectric of the MIM capacitor includes a perovskite-based material. In embodiments, a first electrically conductive layer may be coupled with a top metal layer of the MIM, and/or a second conductive layer may be coupled with a bottom metal layer of the MIM to reduce RC effects. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Chia-Ching LIN, Kaan OGUZ, Sou-Chi CHANG, Arnab SEN GUPTA, I-Cheng TUNG, Ian A. YOUNG, Matthew V. METZ, Uygar E. AVCI, Sudarat LEE
  • Publication number: 20230101604
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to three-dimensional (3D) memory devices with transition metal dichalcogenide (TMD) channels. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Ashish Verma PENUMATCHA, Uygar E. AVCI, Tanay GOSAVI, Shriram SHIVARAMAN, Carl H. NAYLOR, Chelsey DOROW, Ian A. YOUNG, Nazila HARATIPOUR, Kevin P. O'BRIEN
  • Publication number: 20230102177
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to stacked MIM capacitors with multiple metal and dielectric layers that include insulating spacers on edges of one or more of the multiple layers to prevent unintended electrical coupling between metal layers during manufacturing. The dielectric layers may include Perovskite-based materials. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, I-Cheng TUNG, Arnab SEN GUPTA, Ian A. YOUNG, Uygar E. AVCI, Matthew V. METZ
  • Patent number: 11616130
    Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Devin Merrill, Ashish Verma Penumatcha, Chia-Ching Lin, Owen Loh