Patents by Inventor Ibrahim Haskara

Ibrahim Haskara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200312056
    Abstract: A system for monitoring operation of a vehicle includes a processing device including an interface configured to receive measurement data from sensing devices configured to measure parameters of a vehicle system. The processing device is configured to receive measurement data from each of the plurality of sensing devices, and in response to detection of a malfunction in the vehicle, input at least a subset of the measurement data to a machine learning classifier associated with a vehicle subsystem, the classifier configured to define a class associated with normal operation of the vehicle subsystem. The processing device is also configured to determine whether the subset of the measurement data belongs to the class, and based on at least a selected amount of the subset of the measurement data being outside of the class, output a fault indication, the fault indication identifying the vehicle subsystem as having a contribution to the malfunction.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Yue-Yun Wang, Ibrahim Haskara, David Sun, Yusheng Zou, Shiming Duan, Chi-kuan Kao, Xiangxing Lu
  • Publication number: 20200224601
    Abstract: A method of diagnosing a propulsion system implements a top-down hierarchical examination procedure, in which the propulsion system is analyzed as a whole to determine if the propulsion system is healthy. Data from a first set of vehicle sensors is compared to a system-healthy data cluster to determine if the propulsion system is healthy or unhealthy. If the propulsion system is unhealthy, then a plurality of subsystems of the propulsion system are each analyzed at a first examination level using selective data from the sensors to identify one of the subsystems as an unhealthy subsystem. A plurality of component systems of the unhealthy subsystem are then analyzed at a second examination level using other selective data from the sensors to identify one of the component systems of the unhealthy subsystem as an unhealthy component system.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 16, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Chen-fang Chang, Shiming Duan, Chunhao J. Lee, Azeem Sarwar
  • Publication number: 20200223423
    Abstract: A method for controlling continuous and discrete actuators (e.g., modes) in a powertrain system includes receiving preview information from a sensor(s) describing an upcoming dynamic state at a future time point, and providing control inputs for the actuators to a controller that includes the preview information. The input set collectively describes a future torque or speed output state at the future time point. The controller processes the input set via a dynamical predictive model, in real time, to determine control solutions to take at the present time point for implementing the dynamic state at the future time point. A lowest opportunity cost control solution is determined and optimized. The controller executes the optimized solution at the present time step.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 16, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Chen-fang Chang
  • Patent number: 10550786
    Abstract: A method controls multiple continuous actuators to achieve a discrete mode of operation in a system. The method may include determining a desired output state of the system, including processing a control input set for the multiple continuous actuators via a dynamical predictive model of the system, and then processing the control input set via the dynamical predictive model to determine possible control solutions for achieving the desired output state of the system at a calibrated future time point. The method may include using a cost function logic block to identify, from among the possible control solutions, a lowest-cost control solution for executing the discrete mode at the future time point, processing the lowest-cost control solution through a real-time optimization logic block to determine an optimized solution for the discrete mode, and then executing the optimized solution at the future time point.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: February 4, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Chen-fang Chang
  • Patent number: 10393038
    Abstract: A two-stage air charging system for an internal combustion engine with mixed exhaust gas recirculation includes a high pressure exhaust gas recirculation loop, a low pressure exhaust gas recirculation loop, an air throttle system, a turbo air charging system, and an electric air charging system. A method to control the system includes monitoring desired operating target commands and operating parameters. Feedback control signals are determined based upon the monitored desired operating target commands and the monitored operating parameters. The two-stage air charging system is controlled based on system control commands for each of the high pressure exhaust gas recirculation loop, the low pressure exhaust gas recirculation loop, the air throttle system, the turbo air charging system and the electric air charging system.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 27, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Giuseppe Conte
  • Patent number: 10316784
    Abstract: An engine assembly includes an engine and a plurality of actuators. The plurality of actuators includes a first turbine serially connected to a second turbine, the first turbine being a relatively high pressure turbine and the second turbine being a relatively low pressure turbine. A controller is configured to transmit respective command signals to the plurality of actuators. The controller is programmed to obtain respective transfer rates for the plurality of actuators based at least partially on an inversion model. The controller is programmed to control an output of the engine by commanding the plurality of actuators to respective operating parameters via the respective command signals. Prior to obtaining the respective transfer rates, the controller is programmed to determine a respective plurality of desired values and respective correction factors for the plurality of actuators.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: June 11, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Giuseppe Conte, Carmen Pedicini
  • Patent number: 10208696
    Abstract: Disclosed are engine torque and emission control (ETEC) systems, methods for using such systems, and motor vehicles with engines employing ETEC schemes. An ETEC system is disclosed for operating an internal combustion engine (ICE) assembly. The system includes an engine sensor for monitoring engine torque, an exhaust sensor for monitoring nitrogen oxide (NOx) output of the ICE assembly, and an engine control unit (ECU) communicatively connected to the engine sensor, exhaust sensor, and ICE assembly.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 19, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Chen-fang Chang
  • Patent number: 10190516
    Abstract: An engine includes an exhaust gas recirculation system with a high pressure exhaust gas recirculation loop and a low pressure exhaust gas recirculation loop, and an air charging system. A method of controlling the air charging system includes monitoring an actual exhaust gas recirculation rate, operating conditions of a compressor and turbine in the air charging system. A compressor flow is determined based on a target exhaust gas recirculation rate, a target intake manifold pressure and the actual exhaust gas recirculation rate. A power requested by the compressor is determined based on the compressor flow, the target intake manifold pressure, and the monitored operating conditions of the compressor. A power to be generated by the turbine is determined based upon the power requested by the compressor. A turbine flow is determined based upon the power to be generated by the turbine and the monitored operating conditions of the turbine.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: January 29, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ibrahim Haskara, Yue-Yun Wang
  • Publication number: 20180347499
    Abstract: An engine assembly includes an engine and a plurality of actuators. The plurality of actuators includes a first turbine serially connected to a second turbine, the first turbine being a relatively high pressure turbine and the second turbine being a relatively low pressure turbine. A controller is configured to transmit respective command signals to the plurality of actuators. The controller is programmed to obtain respective transfer rates for the plurality of actuators based at least partially on an inversion model. The controller is programmed to control an output of the engine by commanding the plurality of actuators to respective operating parameters via the respective command signals. Prior to obtaining the respective transfer rates, the controller is programmed to determine a respective plurality of desired values and respective correction factors for the plurality of actuators.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 6, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Giuseppe Conte, Carmen Pedicini
  • Publication number: 20180179965
    Abstract: An engine includes an exhaust gas recirculation system with a high pressure exhaust gas recirculation loop and a low pressure exhaust gas recirculation loop, and an air charging system. A method of controlling the air charging system includes monitoring an actual exhaust gas recirculation rate, operating conditions of a compressor and turbine in the air charging system. A compressor flow is determined based on a target exhaust gas recirculation rate, a target intake manifold pressure and the actual exhaust gas recirculation rate. A power requested by the compressor is determined based on the compressor flow, the target intake manifold pressure, and the monitored operating conditions of the compressor. A power to be generated by the turbine is determined based upon the power requested by the compressor. A turbine flow is determined based upon the power to be generated by the turbine and the monitored operating conditions of the turbine.
    Type: Application
    Filed: February 21, 2018
    Publication date: June 28, 2018
    Inventors: Ibrahim Haskara, Yue-Yun Wang
  • Publication number: 20180112616
    Abstract: Disclosed are engine torque and emission control (ETEC) systems, methods for using such systems, and motor vehicles with engines employing ETEC schemes. An ETEC system is disclosed for operating an internal combustion engine (ICE) assembly. The system includes an engine sensor for monitoring engine torque, an exhaust sensor for monitoring nitrogen oxide (NOx) output of the ICE assembly, and an engine control unit (ECU) communicatively connected to the engine sensor, exhaust sensor, and ICE assembly.
    Type: Application
    Filed: October 21, 2016
    Publication date: April 26, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Chen-fang Chang
  • Patent number: 9932918
    Abstract: An engine includes an exhaust gas recirculation system with a high pressure exhaust gas recirculation loop and a low pressure exhaust gas recirculation loop, and an air charging system. A method of controlling the air charging system includes monitoring an actual exhaust gas recirculation rate, operating conditions of a compressor and turbine in the air charging system. A compressor flow is determined based on a target exhaust gas recirculation rate, a target intake manifold pressure and the actual exhaust gas recirculation rate. A power requested by the compressor is determined based on the compressor flow, the target intake manifold pressure, and the monitored operating conditions of the compressor. A power to be generated by the turbine is determined based upon the power requested by the compressor. A turbine flow is determined based upon the power to be generated by the turbine and the monitored operating conditions of the turbine.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: April 3, 2018
    Assignee: GM Global Technology Operations, LLC
    Inventors: Ibrahim Haskara, Yue-Yun Wang
  • Publication number: 20180051639
    Abstract: A two-stage air charging system for an internal combustion engine with mixed exhaust gas recirculation includes a high pressure exhaust gas recirculation loop, a low pressure exhaust gas recirculation loop, an air throttle system, a turbo air charging system, and an electric air charging system. A method to control the system includes monitoring desired operating target commands and operating parameters. Feedback control signals are determined based upon the monitored desired operating target commands and the monitored operating parameters. The two-stage air charging system is controlled based on system control commands for each of the high pressure exhaust gas recirculation loop, the low pressure exhaust gas recirculation loop, the air throttle system, the turbo air charging system and the electric air charging system.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 22, 2018
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Giuseppe Conte
  • Patent number: 9885297
    Abstract: An internal combustion engine includes an air charging system with a boost air system. A method to control the boost air in the air charging system, decoupled from the air and EGR system controls, includes monitoring a reference boost pressure and operating parameters of the air charging system; creating a turbocharger energy balance model of the air charging system; applying feedback linearization control to the turbocharger energy balance model to create an approximately linearized feedback system; and determining a boost control command for the air charging system using the approximately linearized feedback system based on the monitored reference boost pressure and the monitored operating parameters of the air charging system. The boost air in the air charging system is controlled based upon the boost control command.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: February 6, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Vincenzo Alfieri, Giuseppe Conte
  • Patent number: 9850830
    Abstract: An internal combustion engine includes an air charging system with a boost air system. A method to control the boost air in the air charging system, decoupled from the air and EGR system controls, includes monitoring a reference boost pressure and operating parameters of the air charging system; creating a turbocharger energy balance model of the air charging system; applying feedback linearization control to the turbocharger energy balance model to create an approximately linearized feedback system; and determining a boost control command for the air charging system using the approximately linearized feedback system based on the monitored reference boost pressure and the monitored operating parameters of the air charging system. The boost air in the air charging system is controlled based upon the boost control command.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: December 26, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Vincenzo Alfieri, Giuseppe Conte
  • Patent number: 9777657
    Abstract: An internal combustion engine includes an air charging system. A method to control the air charging system includes providing a desired operating target command for the air charging system, and monitoring operating parameters of the air charging system. An error between the desired operating target command for the air charging system and the corresponding one of said operating parameters of the air charging system is determined, and scheduled PID gains are determined based on the error utilizing a PID controller. An adaptive algorithm is applied to modify the scheduled PID gains, and a system control command for the air charging system is determined based upon the modified scheduled PID gains. The air charging system is controlled based upon the system control command for the air charging system.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: October 3, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Chen-Fang Chang, Steven E. Muldoon
  • Publication number: 20170276074
    Abstract: An engine assembly includes a control module configured to receive a torque request and an engine configured to produce an output torque in response to the torque request. The control module includes a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for supervisory model predictive control. The control module includes a multi-layered structure with an upper-level (“UL”) optimizer module configured to optimize at least one system-level objective and a lower-level (“LL”) tracking control module configured to maintain at least one tracking parameter. The multi-layered structure is characterized by a decoupled cost function such that the UL optimizer module minimizes an upper-level cost function (CFUL) and the LL tracking control module minimizes a lower-level cost function (CFLL). The system-level objective may include minimizing fuel consumption of the engine and the tracking parameter may include delivering the torque requested to engine.
    Type: Application
    Filed: March 22, 2016
    Publication date: September 28, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ibrahim Haskara, Yiran Hu, Chen-Fang Chang
  • Patent number: 9771883
    Abstract: An engine assembly includes a control module configured to receive a torque request and an engine configured to produce an output torque in response to the torque request. The control module includes a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for supervisory model predictive control. The control module includes a multi-layered structure with an upper-level (“UL”) optimizer module configured to optimize at least one system-level objective and a lower-level (“LL”) tracking control module configured to maintain at least one tracking parameter. The multi-layered structure is characterized by a decoupled cost function such that the UL optimizer module minimizes an upper-level cost function (CFUL) and the LL tracking control module minimizes a lower-level cost function (CFLL). The system-level objective may include minimizing fuel consumption of the engine and the tracking parameter may include delivering the torque requested to engine.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: September 26, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Yiran Hu, Chen-Fang Chang
  • Patent number: 9759142
    Abstract: An engine control system includes an engine calibration module that sets fuel injection timing based on one of N cetane number (CN) values, wherein N is an integer greater than one. A combustion noise module generates a combustion noise signal based on cylinder pressure in a compression ignition (CI) engine during combustion. A fuel quality determination module compares the combustion noise signal to N predetermined combustion noise levels corresponding to the N CN values, and that selects the one of the N CN values based on the comparison.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: September 12, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Chol-Bum M. Kweon, Frederic Anton Matekunas, Ibrahim Haskara, Yue-Yun Wang, Ognyan N. Yanakiev, Donald Terry French, Paul Anthony Battiston
  • Patent number: 9644543
    Abstract: An engine assembly includes an intake manifold and a manifold absolute pressure sensor configured to generate a current measured manifold absolute pressure (MAPM) signal for the intake manifold. The assembly includes a throttle valve adjustable to control airflow to the intake manifold and a throttle position sensor configured to generate a current measured throttle position (TPM) signal. A controller is operatively connected to the throttle valve and the manifold absolute pressure sensor and has a processor and tangible, non-transitory memory on which is recorded instructions for executing a method for determining a predicted manifold absolute pressure (MAPP). Execution of the instructions by the processor causes the controller to determine the predicted manifold absolute pressure (MAPP) based at least partially on a predicted throttle flow (TFP) and the current measured manifold absolute pressure (MAPM) signal.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: May 9, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Yiran Hu, Ibrahim Haskara, Shifang Li, Sai S. V. Rajagopalan, Steven E Muldoon, Chen-Fang Chang