Patents by Inventor Ichiro Fukushi

Ichiro Fukushi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11112614
    Abstract: A light-emitting device improves the beam quality of emission light from a single emitter light source in the slow-axis direction, and includes a light source 10 having a single emitter and a beam shaping module that splits the emission light from the light source into to a plurality of split-lights in the slow-axis direction, and shapes the split-lights as a shaped-beam arrayed in the fast-axis direction, and outputs the shaped-beam.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: September 7, 2021
    Assignee: SHIMADZU CORPORATION
    Inventors: Akiyuki Kadoya, Ichiro Fukushi, Koji Tojo
  • Patent number: 10727644
    Abstract: A laser device has a plurality of laser diodes; a plurality of optical elements installed corresponding to the plurality of the laser diodes; a plurality of units formed by fixing the laser diodes and the optical elements per each laser diode and installed corresponding to the plurality of the laser diodes; a converging element that converges laser beams emitted from the plurality of the laser diodes to a fiber; a housing element houses the plurality of the units and the converging element; and a thermal transfer plate performs heat dissipation of the plurality of the units. The heat resistance reducing element having a heat resistance value that is smaller than a predetermined value is installed between the thermal transfer plate and each unit or the processing for reducing the heat resistance is performed.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: July 28, 2020
    Assignee: SHIMADZU CORPORATION
    Inventors: Junki Sakamoto, Ichiro Fukushi, Akiyuki Kadoya, Kazuma Watanabe, Naoya Ishigaki, Jiro Saikawa, Shingo Uno, Tomoyuki Hiroki, Koji Tojo
  • Patent number: 10514486
    Abstract: The light emitting device is provided with a plurality of emitted elements 11, 12 to 1n; a light diffusion element 40 which diffuses emitted light L11, L12 to L1n respectively from the light emitting elements 11, 12 to 1n and outputs diffused light L21, L22 to L2n; and an optical coupling element 50 which receives the diffused light L21, L22 to L2n and outputs the output light L3 that is obtained by coupling the diffused light L21, L22 to L2n. The light diffusion element 40 diffuses the emitted light L11, L12 to L1n into a range that includes the direction of the optical axis of the optical coupling element 50.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: December 24, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Akiyuki Kadoya, Ichiro Fukushi
  • Patent number: 10361535
    Abstract: The semiconductor laser driving circuit that controls an overshoot on modulation includes a semiconductor laser, of which anode is connected to a power source, that emits the laser light that is modulated by an external modulation input signal, an impedance element connected to a cathode of the laser device, an impedance element connected to the anode, and a collector of a transistor Q1, connected to the impedance element; a collector of a transistor Q2, connected to the other end of the impedance element, a differential pair circuit to which emitters of Q1, Q2 are connected; an electric current source iMOD connected to the emitters of Q1, Q2; and a differential driver that generates a differential voltage (vb1?vb2) that controls Q1, Q2 by driving Q1 by the external modulation input signal, wherein the differential driver controls the differential voltage so that the amplitude of the overshoot of the electric current, which flows in the laser when the output of the laser is at a high-level.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: July 23, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Ichiro Fukushi, Akiyuki Kadoya, Kazuma Watanabe
  • Publication number: 20190179071
    Abstract: The light emitting device is provided with a plurality of emitted elements 11, 12 to 1n; a light diffusion element 40 which diffuses emitted light L11, L12 to L1n respectively from the light emitting elements 11, 12 to 1n and outputs diffused light L21, L22 to L2n; and an optical coupling element 50 which receives the diffused light L21, L22 to L2n and outputs the output light L3 that is obtained by coupling the diffused light L21, L22 to L2n. The light diffusion element 40 diffuses the emitted light L11, L12 to L1n into a range that includes the direction of the optical axis of the optical coupling element 50.
    Type: Application
    Filed: August 26, 2016
    Publication date: June 13, 2019
    Applicant: SHIMADZU CORPORATION
    Inventors: Akiyuki KADOYA, Ichiro FUKUSHI
  • Patent number: 10230213
    Abstract: A semiconductor laser driving circuit that ensures the satisfied extinction ratio, the accuracy of the light output, and enables the light output dynamically to change based on a modulation signal.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 12, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Ichiro Fukushi, Akiyuki Kadoya, Kazuma Watanabe
  • Publication number: 20190027894
    Abstract: A semiconductor laser driving circuit that ensures the satisfied extinction ratio, the accuracy of the light output, and enables the light output dynamically to change based on a modulation signal.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 24, 2019
    Applicant: SHIMADZU CORPORATION
    Inventors: Ichiro FUKUSHI, Akiyuki KADOYA, Kazuma WATANABE
  • Publication number: 20190027893
    Abstract: The semiconductor laser driving circuit that controls an overshoot on modulation includes a semiconductor laser, of which anode is connected to a power source, that emits the laser light that is modulated by an external modulation input signal, an impedance element connected to a cathode of the laser device, an impedance element connected to the anode, and a collector of a transistor Q1, connected to the impedance element; a collector of a transistor Q2, connected to the other end of the impedance element, a differential pair circuit to which emitters of Q1, Q2 are connected; an electric current source iMOD connected to the emitters of Q1, Q2; and a differential driver that generates a differential voltage (vb1?vb2) that controls Q1, Q2 by driving Q1 by the external modulation input signal, wherein the differential driver controls the differential voltage so that the amplitude of the overshoot of the electric current, which flows in the laser when the output of the laser is at a high-level.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 24, 2019
    Applicant: SHIMADZU CORPORATION
    Inventors: Ichiro FUKUSHI, Akiyuki KADOYA, Kazuma WATANABE
  • Patent number: 10137526
    Abstract: A laser machining device machines a machining target subject by irradiating the converged laser beam output from each laser diode of a plurality of laser diodes connected in series to each other. A machining laser beam output-power driving circuit Q1 outputs a machining laser beam by driving the plurality of laser diodes 11a-11 d, 13. A guide light output-power driving circuit Q2 outputs a guide light by driving a partial laser diode 13 of the plurality of laser diodes. A selection means SW1, SW2 selects the guide light output-power driving circuit on determining the position and selects the machining laser output-power driving circuit on a laser machining. A setup value comparison circuit 16 controls the electric current flowing through the part of laser diodes to be below the electric current setup value to output the guide light having electric current not higher than the predetermined value.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: November 27, 2018
    Assignee: SHIMADZU CORPORATION
    Inventors: Junki Sakamoto, Ichiro Fukushi, Aklyuki Kadoya, Kazuma Watanabe, Jiro Saikawa, Naoya Ishigaki, Shingo Uno, Tomoyuki Hiroki, Koji Tojo
  • Publication number: 20180013263
    Abstract: A laser device has a plurality of laser diodes; a plurality of optical elements installed corresponding to the plurality of the laser diodes; a plurality of units formed by fixing the laser diodes and the optical elements per each laser diode and installed corresponding to the plurality of the laser diodes; a converging element that converges laser beams emitted from the plurality of the laser diodes to a fiber; a housing element houses the plurality of the units and the converging element; and a thermal transfer plate performs heat dissipation of the plurality of the units. The heat resistance reducing element having a heat resistance value that is smaller than a predetermined value is installed between the thermal transfer plate and each unit or the processing for reducing the heat resistance is performed.
    Type: Application
    Filed: February 6, 2015
    Publication date: January 11, 2018
    Applicant: SHIMADZU CORPORATION
    Inventors: JUNKI SAKAMOTO, Ichiro FUKUSHI, Akiyuki KADOYA, Kazuma WATANABE, Naoya ISHIGAKI, Jiro SAIKAWA, Shingo UNO, Tomoyuki HIROKI, Koji TOJO
  • Patent number: 9746615
    Abstract: The light-synthesizing laser device includes a plurality of collimating lenses that are arranged in a one-to-one relationship with a plurality of laser light sources which exhibit anisotropy in a laser light emission angle, and that convert laser light beams emitted from the laser light sources into parallel light; a condensing lens that condenses the laser light that has been converted into parallel light by the plurality of collimating lenses; and an optical fiber (5) having a square waveguide core (SC) which has a square shape, the fiber receiving and synthesizing the laser light condensed by the condensing lens. A longitudinal axis of a condensed beam condensed by the condensing lens is aligned with a diagonal axis of the square waveguide core.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: August 29, 2017
    Assignee: SHIMADZU CORPORATION
    Inventors: Jiro Saikawa, Naoya Ishigaki, Shingo Uno, Tomoyuki Hiroki, Ichiro Fukushi, Akiyuki Kadoya, Junki Sakamoto, Koji Tojo, Kazuma Watanabe
  • Patent number: 9647422
    Abstract: A laser device has a plurality of semiconductor lasers, a driving device that supplies a driving electric current to the semiconductor laser, a trigger generation circuit that sends a trigger signal to the driving device in order to output the driving electric current, and a wave-combining device that wave-combines laser light emitted from the semiconductor lasers at the combined-wave end, and at least any one of a signal transmitting time, an electric current transmitting time and a light transmitting time is adjusted so as to be the time set respectively for transmitting paths; wherein the signal transmitting time in which the trigger signal transmits over the signal path, the electric current transmitting time in which the laser light transmits over the electric current path, a light transmitting time in which the laser light transmits over the optical path.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: May 9, 2017
    Assignee: SHIMADZU CORPORATION
    Inventors: Tomoyuki Hiroki, Koji Tojo, Kazuma Watanabe, Ichiro Fukushi, Akiyuki Kadoya, Junki Sakamoto, Jiro Saikawa, Naoya Ishigaki, Shingo Uno
  • Publication number: 20170110849
    Abstract: A laser device has a plurality of semiconductor lasers, a driving device that supplies a driving electric current to the semiconductor laser, a trigger generation circuit that sends a trigger signal to the driving device in order to output the driving electric current, and a wave-combining device that wave-combines laser light emitted from the semiconductor lasers at the combined-wave end, and at least any one of a signal transmitting time, an electric current transmitting time and a light transmitting time is adjusted so as to be the time set respectively for transmitting paths; wherein the signal transmitting time in which the trigger signal transmits over the signal path, the electric current transmitting time in which the laser light transmits over the electric current path, a light transmitting time in which the laser light transmits over the optical path.
    Type: Application
    Filed: March 26, 2014
    Publication date: April 20, 2017
    Applicant: SHIMADZU CORPORATION
    Inventors: Tomoyuki HIROKI, Koji TOJO, Kazuma WATANABE, Ichiro FUKUSHI, Akiyuki KADOYA, Junki SAKAMOTO, Jiro SAIKAWA, Naoya ISHIGAKI, Shingo UNO
  • Publication number: 20170082805
    Abstract: The light-synthesizing laser device includes a plurality of collimating lenses that are arranged in a one-to-one relationship with a plurality of laser light sources which exhibit anisotropy in a laser light emission angle, and that convert laser light beams emitted from the laser light sources into parallel light; a condensing lens that condenses the laser light that has been converted into parallel light by the plurality of collimating lenses; and an optical fiber (5) having a square waveguide core (SC) which has a square shape, the fiber receiving and synthesizing the laser light condensed by the condensing lens. A longitudinal axis of a condensed beam condensed by the condensing lens is aligned with a diagonal axis of the square waveguide core.
    Type: Application
    Filed: June 17, 2014
    Publication date: March 23, 2017
    Applicant: SHIMADZU CORPORATION
    Inventors: JIRO SAIKAWA, Naoya ISHIGAKI, Shingo UNO, Tomoyuki HIROKI, Ichiro FUKUSHI, Akiyuki KADOYA, Junki SAKAMOTO, Koji TOJO, Kazuma WATANABE
  • Publication number: 20170021449
    Abstract: A laser machining device machines a machining target subject by irradiating the converged laser beam output from each laser diode of a plurality of laser diodes connected in series to each other. A machining laser beam output-power driving circuit Q1 outputs a machining laser beam by driving the plurality of laser diodes 11a-11 d, 13. A guide light output-power driving circuit Q2 outputs a guide light by driving a partial laser diode 13 of the plurality of laser diodes. A selection means SW1, SW2 selects the guide light output-power driving circuit on determining the position and selects the machining laser output-power driving circuit on a laser machining. A setup value comparison circuit 16 controls the electric current flowing through the part of laser diodes to be below the electric current setup value to output the guide light having electric current not higher than the predetermined value.
    Type: Application
    Filed: March 11, 2014
    Publication date: January 26, 2017
    Applicant: SHIMADZU CORPORATION
    Inventors: JUNKI SAKAMOTO, Ichiro FUKUSHI, Aklyuki KADOYA, Kazuma WATANABE, Jiro SAIKAWA, Naoya ISHIGAKI, Shingo UNO, Tomoyuki HIROKI, Koji TOJO
  • Patent number: 7620079
    Abstract: A compact apparatus is provided for stably converting a wavelength of a laser diode with the use of an optical fiber and a wavelength selective device. Employing a bulk type element as a wavelength selective device makes the action of controlling the temperature of the device easy, and can stabilize the wavelength emitted from the laser diode. The optical fiber (2) is placed between the output side of a laser diode (1) and a wavelength selective device (5) of bulk type. While the optical fiber (2) is arranged compact in the form of a coil, the length of an extra-cavity defined by the wavelength selective device (5) is sufficiently longer than the coherence length. Accordingly, the action of stably converting the wavelength can be carried out by the compact apparatus.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: November 17, 2009
    Assignee: Shimadzu Corporation
    Inventors: Ichiro Fukushi, Koji Tojo, Kazuma Watanabe
  • Publication number: 20090196320
    Abstract: A compact apparatus is provided for stably converting a wavelength of a laser diode with the use of an optical fiber and a wavelength selective device. Employing a bulk type element as a wavelength selective device makes the action of controlling the temperature of the device easy, and can stabilize the wavelength emitted from the laser diode. The optical fiber (2) is placed between the output side of a laser diode (1) and a wavelength selective device (5) of bulk type. While the optical fiber (2) is arranged compact in the form of a coil, the length of an extra-cavity defined by the wavelength selective device (5) is sufficiently longer than the coherence length. Accordingly, the action of stably converting the wavelength can be carried out by the compact apparatus.
    Type: Application
    Filed: April 30, 2008
    Publication date: August 6, 2009
    Applicant: Shimadzu Corporation
    Inventors: Ichiro Fukushi, Koji Tojo, Kazuma Watanabe
  • Patent number: 7209504
    Abstract: A solid laser apparatus has either a combination of a lowpass filter (9c) and a highpass filter (9d) or a bandpass filter 9f provided in its output control circuit (8, 9, 10) for increasing the gain and adjusting the phase of a signal in the vicinity of the relaxation oscillating frequency. Also, a solid laser apparatus has the phase shift circuit (9g) provided in its output control circuit (8,9,10) for advancing the phase of a signal in the vicinity of the relaxation oscillating frequency thereof. Moreover, a solid laser apparatus has a pseudo notch filter (9h), which is arranged for the gain to have a local minimum at the relaxation oscillating frequency of the solid laser apparatus, provided in the output control circuit (8,9,10) so that the peak of the gain transmission characteristic of the nonlinear optical device (4) or of a combination of the nonlinear optical device (4) and the microchip laser crystal (3) is offset.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 24, 2007
    Assignee: Shimadzu Corporation
    Inventors: Koji Tojo, Satoshi Irikuchi, Kazuma Watanabe, Tunehiro Sugimoto, Ichiro Fukushi, Naoya Ishigaki, Koji Inoue
  • Patent number: 7145924
    Abstract: A solid laser apparatus has either a combination of a lowpass filter and a highpass filter or a bandpass filter provided in its output control circuit for increasing the gain and adjusting the phase of a signal in the vicinity of the relaxation oscillating frequency. Also, a solid laser apparatus has the phase shift circuit provided in its output control circuit for advancing the phase of a signal in the vicinity of the relaxation oscillating frequency thereof. Moreover, a solid laser apparatus has a pseudo notch filter, which is arranged for the gain to have a local minimum at the relaxation oscillating frequency of the solid laser apparatus, provided in the output control circuit so that the peak of the gain transmission characteristic of the nonlinear optical device or of a combination of the nonlinear optical device and the microchip laser crystal is offset.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: December 5, 2006
    Assignee: Shimadzu Corporation
    Inventors: Koji Tojo, Satoshi Irikuchi, Kazuma Watanabe, Tunehiro Sugimoto, Ichiro Fukushi, Naoya Ishigaki, Koji Inoue
  • Patent number: 7103075
    Abstract: A solid laser apparatus has a wavelength converter temperature controller 40 arranged for driving a Peltier device 41 to control the temperature Tc of a wavelength converter 5 so that the acceptable wavelength range of the wavelength converter 5 adapts to the wavelength range of reflected light from the grating part 6 at the temperature Ti and a laser controller 60 arranged for driving a semiconductor light amplifier device 1 to maintain the intensity of the extraordinary component passed through the polarizer 52 and measured by a photometer device 57.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: September 5, 2006
    Assignee: Shimadzu Corporation
    Inventors: Koji Tojo, Takashi Fujita, Ichiro Fukushi