Patents by Inventor Ida Lee

Ida Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8898810
    Abstract: A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: November 25, 2014
    Assignees: UT-Battelle, LLC, University of Tennesse Research Foundation
    Inventors: Barbara R. Evans, Ida Lee
  • Publication number: 20140123348
    Abstract: A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.
    Type: Application
    Filed: December 23, 2013
    Publication date: May 1, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Barbara R. Evans, Ida Lee
  • Patent number: 8635711
    Abstract: A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 21, 2014
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: Barbara R. Evans, Ida Lee
  • Patent number: 6755956
    Abstract: A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: June 29, 2004
    Assignee: UT-Battelle, LLC
    Inventors: James Weifu Lee, Douglas H. Lowndes, Vladimir I. Merkulov, Gyula Eres, Yayi Wei, Elias Greenbaum, Ida Lee
  • Publication number: 20020046953
    Abstract: A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.
    Type: Application
    Filed: June 4, 2001
    Publication date: April 25, 2002
    Inventors: James Weifu Lee, Douglas H. Lowndes, Vladimir I. Merkulov, Gyula Eres, Yayi Wei, Elias Greenbaum, Ida Lee
  • Patent number: 6231983
    Abstract: Molecular devices using functional Photosystem I reaction centers are prepared on flat derivatized substrate surfaces. The nature and extent of orientation are controlled by chemical modification of the surface derivative. The surface of the substrate is chemically modified such that the Photosystem I reaction centers may be immobilized in a desired orientation. Preferably, a sulfur-organic compound is used to chemically modify the surface of the substrate. Depending on the type of chemical modification, the orientation of the reaction centers may be parallel to the surface, perpendicular to the surface in the “up” position, or perpendicular to the surface in the “down” position. The different orientations provide different electrical characteristics to the device.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: May 15, 2001
    Assignee: UT-Battelle
    Inventors: Ida Lee, James W. Lee, Elias Greenbaum