Patents by Inventor Iftikhar Ahmad

Iftikhar Ahmad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110226759
    Abstract: An apparatus for heating a semiconductor wafer includes: a microwave source; an applicator cavity; and, a fixture for supporting a wafer in the cavity. The fixture comprises a dielectric mechanical support for the wafer and a grounded metallic ring movably positioned parallel to and concentric with the wafer at some distance from the wafer, to adjust the microwave power distribution to compensate for edge effects. A closed-loop feedback system adjusts the distance based on wafer edge and center temperatures. A method for heating a semiconductor wafer comprises: a. placing the wafer in a microwave cavity; b. supporting the wafer on a fixture comprising a dielectric wafer support and a grounded metallic ring movably positioned at some distance from the wafer; c. introducing microwave power into the cavity to heat the wafer; and d. adjusting the distance between wafer and ring to modify the power distribution near the wafer edge.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 22, 2011
    Inventors: Joseph M. Wander, Zakaryae Fathi, Keith R. Hicks, Clayton R. DeCamillis, Iftikhar Ahmad
  • Patent number: 8021898
    Abstract: A materials processing system comprises a thermal processing chamber including a heating source, a first noncontacting thermal measurement device positioned to measure temperature on a first area of the material being processed, and, a second noncontacting thermal measurement device positioned to measure temperature on a second area of the material being processed, the first device being relatively more sensitive to changes in surface emissivity than the second device. By comparing the outputs of the two devices, emissivity changes can be detected and used as a proxy for some physical change in the workpiece and thereby determine when the desired process has been completed. The system may be used to develop a process recipe, or it may be part of a system for real-time process control based on emissivity changes. Applicable processes include heating, annealing, dopant activation, silicide formation, carburization, nitridation, sintering, oxidation, vapor deposition, metallization, and plating.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 20, 2011
    Assignee: Lambda Technologies, Inc.
    Inventors: Iftikhar Ahmad, Keith R. Hicks
  • Patent number: 7939456
    Abstract: A microwave heating system comprises a microwave applicator cavity; a microwave power supply to deliver power to the applicator cavity; a dielectric support to support a generally planar workpiece; a dielectric gas manifold to supply a controlled flow of inert gas proximate to the periphery of the workpiece to provide differential cooling to the edge relative to the center; a first temperature measuring device configured to measure the temperature near the center of the workpiece; and, a second temperature measuring device configured to measure the temperature near the edge of the workpiece. The gas flow is controlled to minimize the temperature difference from center to edge, and may be recipe driven or controlled in real time, based on the two temperature measurements. The method is particularly useful for monolithic semiconductor wafers, various semiconducting films on substrates, and dielectric films on semiconducting wafers.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: May 10, 2011
    Assignee: Lambda Technologies, Inc.
    Inventors: Iftikhar Ahmad, Keith R. Hicks
  • Publication number: 20110076786
    Abstract: A materials processing system comprises a thermal processing chamber including a heating source, a first noncontacting thermal measurement device positioned to measure temperature on a first area of the material being processed, and, a second noncontacting thermal measurement device positioned to measure temperature on a second area of the material being processed, the first device being relatively more sensitive to changes in surface emissivity than the second device. By comparing the outputs of the two devices, emissivity changes can be detected and used as a proxy for some physical change in the workpiece and thereby determine when the desired process has been completed. The system may be used to develop a process recipe, or it may be part of a system for real-time process control based on emissivity changes. Applicable processes include heating, annealing, dopant activation, silicide formation, carburization, nitridation, sintering, oxidation, vapor deposition, metallization, and plating.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 31, 2011
    Inventors: Iftikhar Ahmad, Keith R. Hicks
  • Publication number: 20110076787
    Abstract: A microwave heating system comprises a microwave applicator cavity; a microwave power supply to deliver power to the applicator cavity; a dielectric support to support a generally planar workpiece; a dielectric gas manifold to supply a controlled flow of inert gas proximate to the periphery of the workpiece to provide differential cooling to the edge relative to the center; a first temperature measuring device configured to measure the temperature near the center of the workpiece; and, a second temperature measuring device configured to measure the temperature near the edge of the workpiece. The gas flow is controlled to minimize the temperature difference from center to edge, and may be recipe driven or controlled in real time, based on the two temperature measurements. The method is particularly useful for monolithic semiconductor wafers, various semiconducting films on substrates, and dielectric films on semiconducting wafers.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 31, 2011
    Inventors: Iftikhar Ahmad, Keith R. Hicks
  • Patent number: 7901536
    Abstract: Conductive traces and patterns of same are used to bond components together via electromagnetic radiation. Each conductive trace is configured to resonate and heat up when irradiated with electromagnetic radiation, such as microwave energy and/or RF energy, having a wavelength that is about 2.3 times the length of the conductive trace. The conductive traces may be arranged in a pattern to uniformly heat a target area of a substrate or other component to a selected temperature when irradiated with electromagnetic radiation.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: March 8, 2011
    Assignee: Lambda Technologies, Inc.
    Inventors: Zakaryae Fathi, Steve Greathouse, Robert Hubbard, Iftikhar Ahmad
  • Publication number: 20070284034
    Abstract: Conductive traces and patterns of same are used to bond components together via electromagnetic radiation. Each conductive trace is configured to resonate and heat up when irradiated with electromagnetic radiation, such as microwave energy and/or RF energy, having a wavelength that is about 2.3 times the length of the conductive trace. The conductive traces may be arranged in a pattern to uniformly heat a target area of a substrate or other component to a selected temperature when irradiated with electromagnetic radiation.
    Type: Application
    Filed: May 29, 2007
    Publication date: December 13, 2007
    Inventors: Zakaryae Fathi, Steve Greathouse, Robert Hubbard, Iftikhar Ahmad
  • Publication number: 20070215607
    Abstract: An apparatus for heating a semiconductor wafer includes the following: a microwave source; an applicator cavity; and, a fixture for supporting a wafer in the applicator cavity. The fixture comprises a dielectric member providing mechanical support for the wafer and a metallic ring disposed generally parallel to and concentric with the wafer at a selected distance from the wafer, whereby the application of microwave power to the wafer may be adjusted to compensate for edge effects. An associated method for heating a semiconductor wafer comprises the steps of: a. placing the wafer in a microwave applicator cavity; b. supporting the wafer on a fixture, the fixture comprising a dielectric supporting member in contact with the wafer and a metallic ring member disposed generally parallel to and concentric with the wafer at a selected distance from the wafer; and, c.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 20, 2007
    Inventors: Joseph M. Wander, Zakaryaa Fathi, Keith R. Hicks, Clayton R. DeCamillis, Iftikhar Ahmad
  • Publication number: 20070215612
    Abstract: A microwave heating apparatus is designed to improve distribution of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. The microwave heating apparatus includes a microwave signal generator and a waveguide to convey microwave power to the cavity. A perforated metal plate disposed within the cavity encloses a volume adjacent to the waveguide opening, forming a leaky multimode subcavity. Through multiple processes of reflection, transmission, diffraction, and scattering, the leaky subcavity serves to smooth the microwave power distribution in the near-field region adjacent to the waveguide to better disperse the energy throughout the main applicator cavity. A more uniform level of microwave power is thereby applied to the workpiece.
    Type: Application
    Filed: March 20, 2006
    Publication date: September 20, 2007
    Inventors: Keith Hicks, Iftikhar Ahmad, Clayton DeCamillis, Joseph Wander, Zakaryae Fathi
  • Patent number: 6758609
    Abstract: In-situ and post-cure methods of joining optical fibers and optoelectronic components are provided. An in situ method of joining an optical fiber to an optoelectronic component includes positioning an optical fiber and optoelectronic component in adjacent relationship such that light signals can pass therebetween, applying a curable resin having adhesive properties to an interface of the optical fiber and the optoelectronic component, aligning the optical fiber and optoelectronic component relative to each other such that signal strength of light signals passing between the optical fiber and the optoelectronic component is substantially maximized, and irradiating the interface with non-ionizing radiation in RF/microwave energy to rapidly cure the resin.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: July 6, 2004
    Assignee: Lambda Technologies
    Inventors: Zakaryae Fathi, William L. Geisler, Joseph M. Wander, Iftikhar Ahmad, Richard S. Garard
  • Publication number: 20030228114
    Abstract: In-situ and post-cure methods of joining optical fibers and optoelectronic components are provided. An in situ method of joining an optical fiber to an optoelectronic component includes positioning an optical fiber and optoelectronic component in adjacent relationship such that light signals can pass therebetween, applying a curable resin having adhesive properties to an interface of the optical fiber and the optoelectronic component, aligning the optical fiber and optoelectronic component relative to each other such that signal strength of light signals passing between the optical fiber and the optoelectronic component is substantially maximized, and irradiating the interface with non-ionizing radiation in RF/microwave energy to rapidly cure the resin.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Inventors: Zakaryae Fathi, William L. Geisler, Joseph M. Wander, Iftikhar Ahmad, Richard S. Garard
  • Publication number: 20020062667
    Abstract: The present invention pertains to an apparatus for cleaning items having cloth. The apparatus comprises a housing having a microwave cavity. The apparatus comprises a drum disposed within the cavity which is made of a material which is transparent to microwaves. The items are disposed in the drum when they are cleaned. The apparatus also comprises a microwave source in communication with the cavity to provide microwave energy to the cavity. Additionally, the apparatus comprises a fluid source in contact with the cavity to provide fluid to the cavity. The apparatus comprises a mechanism for moving the drum. The mechanism is connected with the drum. The present invention pertains to a method for washing items having cloth. The method comprises the steps of placing the items having cloth into a washing machine. Next, there is the step of irradiating the items with microwaves to clean the items. Preferably, after the placing step, there is a step of agitating mechanically the items in the washing machine.
    Type: Application
    Filed: January 14, 2002
    Publication date: May 30, 2002
    Inventor: Iftikhar Ahmad
  • Patent number: 5238710
    Abstract: A method for the production of ceramic matrix composites by chemical vapor infiltration. The method includes exposing an infiltrated preform to microwave energy, with pressure variation of the reactant gases in the processing chamber and/or temperature variation of the preform during processing, to produce substantially improved composites. The process provides higher deposition rates within the core of the ceramic matrix composite, higher densification which advantageously initiates within the interior of the ceramic matrix composite and proceeds radially outward, and a thick wall ceramic matrix composite with an overall reduced density gradient.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: August 24, 1993
    Assignee: Technology Assessment & Transfer, Inc.
    Inventors: Iftikhar Ahmad, Edward L. Paquette, Richard Silberglitt
  • Patent number: 5077268
    Abstract: A process for producing a superconducting ceramic material using microwave energy and the superconducting ceramic material produced thereby. A preferred process comprises the steps of mixing powders of Y.sub.2 O.sub.3, CuO and at least one member selected from the group consisting of BaCO.sub.3 and BaO, and then subjecting the resultant powder mixture to heat treatment in microwave energy. In a preferred embodiment, the heat treatment step comprises the steps of calcining, sintering and annealing, at least one of the calcining and annealing steps using microwave energy.
    Type: Grant
    Filed: April 5, 1988
    Date of Patent: December 31, 1991
    Assignee: University of Florida
    Inventors: David E. Clark, Iftikhar Ahmad, Gregory T. Chandler