Patents by Inventor Igor Berlin

Igor Berlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10205538
    Abstract: Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: February 12, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Patent number: 10200124
    Abstract: Unified optical fiber-based distributed antenna systems (DASs) for supporting small cell communications deployment from multiple small cell service providers are disclosed. The unified optical fiber-based DASs disclosed herein are configured to receive multiple small cell communications from different small cell service providers to be deployed over optical fiber to small cells in the DAS. In this manner, the same DAS architecture can be employed to distribute different small cell communications from different small cell service providers to small cells. Use of optical fiber for delivering small cell communications can reduce the risk of having to deploy new cabling if bandwidth needs for future small cell communication services exceeds conductive wiring capabilities. Optical fiber cabling can also allow for higher distance cable runs to the small cells due to the lower loss of optical fiber, which can provide for enhanced centralization services.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: February 5, 2019
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, William Patrick Cune
  • Patent number: 10194299
    Abstract: A wireless distribution system (WDS) is configured for transmitting a downlink signal or for receiving an uplink signal. A computing device configured to serve as a client device to the WDS includes a memory; a multiple applications processor in communication with the memory and configured to execute one or more mobile applications; and a wireless service processor in communication with the multi applications processor for communicating via a corresponding wireless service with the WDS. The multi applications processor is configured to execute an instance of a data service to establish a connection with the WDS for a specified application process utilizing the wireless service to provide at least one datum on the WDS. In the method, an instance of a data service is executed to establish a connection with a WDS for a specified application process utilizing a wireless service to provide at least one datum on the WDS.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: January 29, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Aravind Chamarti, Yuval Zinger
  • Patent number: 10148347
    Abstract: A communications system is disclosed that includes at least one remote expansion unit (RXU) that is operatively coupled to at least one remote unit (RU). The at least one RU is configured to receive a first and a second downlink optical radio frequency (RF) communications signal. The at least one RU comprises at least one optical-to-electrical (O/E) converter configured to convert the first and second downlink optical RF communications signals to respective first and second downlink electrical RF communications signals. The at least one RXU is configured to receive the second downlink electrical RF communications signal from the at least one RU. The RU may comprise selection circuitry configured to identify which of the downlink electrical communications signals are sent to the RXU. The RXU may be configured to provide an uplink electrical RF communications signal received from a client device to the RU.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: December 4, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene
  • Publication number: 20180262917
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head-end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Application
    Filed: May 8, 2018
    Publication date: September 13, 2018
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Patent number: 10014944
    Abstract: Distributed antenna systems supporting digital data signal propagation between remote antenna clusters, and related distributed antenna systems, components and methods are disclosed. The distributed antenna systems facilitate distributing digital data signals to provide digital data services remotely to distributed remote antenna units. The digital data signals may be propagated between remote antenna units within a remote antenna cluster for digital data signals transmitted to wireless client devices in the distributed antenna system and for digital data signals received from wireless client devices in the distributed antenna system. Received digital data signals from wireless client devices can be propagated from remote antenna unit to remote antenna unit in a remote antenna cluster until the digital data signals reach a wired network device for communication over a network.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: July 3, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Dan Harris, Michael Sauer
  • Patent number: 9967754
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head-end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: May 8, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Publication number: 20180103384
    Abstract: Optimizing performance between a wireless distribution system (WDS) and a macro network(s). In this regard, a macro network optimization system is configured to detect a performance indicator(s) between a WDS and a macro network and optimize the performance of the macro network based on the detected performance indicator(s). The macro network optimization system analyzes a macro network performance report provided by the macro network and/or a WDS performance report provided by the WDS to detect the performance indicator(s) between the WDS and the macro network. The macro network optimization system reconfigures operations of one or more macro network elements to optimize performance between the WDS and the macro network based on the detected performance indicator(s). By detecting and optimizing performance between the WDS and the macro network, capacity, throughput, and/or coverage of the WDS and the macro network can be improved, thus providing better quality of experience (QoE).
    Type: Application
    Filed: December 7, 2017
    Publication date: April 12, 2018
    Inventors: Igor Berlin, Dror Harel, Yair Zeev Shapira
  • Publication number: 20180103383
    Abstract: Optimizing performance between a wireless distribution system (WDS) and a macro network(s). In this regard, a macro network optimization system is configured to detect a performance indicator(s) between a WDS and a macro network and optimize the performance of the macro network based on the detected performance indicator(s). The macro network optimization system analyzes a macro network performance report provided by the macro network and/or a WDS performance report provided by the WDS to detect the performance indicator(s) between the WDS and the macro network. The macro network optimization system reconfigures operations of one or more macro network elements to optimize performance between the WDS and the macro network based on the detected performance indicator(s). By detecting and optimizing performance between the WDS and the macro network, capacity, throughput, and/or coverage of the WDS and the macro network can be improved, thus providing better quality of experience (QoE).
    Type: Application
    Filed: December 7, 2017
    Publication date: April 12, 2018
    Inventors: Igor Berlin, Dror HareI, Yair Zeev Shapira
  • Patent number: 9929810
    Abstract: Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules (RIMs) and optical interface modules (OIMs) in an optical fiber-based distributed antenna system (DAS) are disclosed. In one embodiment, the flexible head-end chassis includes a plurality of module slots each configured to receive either a RIM or an OIM. A chassis control system identifies an inserted RIM or OIM to determine the type of module inserted. Based on the identification of the inserted RIM or OIM, the chassis control system interconnects the inserted RIM or OIM to related combiners and splitters in head-end equipment for the RIM or OIM to receive downlink communication signals and uplink communications signals for processing and distribution in the optical fiber-based DAS. In this manner, the optical fiber-based DAS can easily be configured or reconfigured with different combinations of RIMs and OIMs to support the desired communications services and/or number of remote units.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 27, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, William Patrick Cune, Gavriel Mizrahi
  • Publication number: 20180083673
    Abstract: A method and system for supporting M1MO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
    Type: Application
    Filed: September 21, 2016
    Publication date: March 22, 2018
    Inventors: Igor Berlin, Yair Oren, Rami Reuven, Ofer Saban, Isaac Shapira
  • Publication number: 20180062745
    Abstract: Unified optical fiber-based distributed antenna systems (DASs) for supporting small cell communications deployment from multiple small cell service providers are disclosed. The unified optical fiber-based DASs disclosed herein are configured to receive multiple small cell communications from different small cell service providers to be deployed over optical fiber to small cells in the DAS. In this manner, the same DAS architecture can be employed to distribute different small cell communications from different small cell service providers to small cells. Use of optical fiber for delivering small cell communications can reduce the risk of having to deploy new cabling if bandwidth needs for future small cell communication services exceeds conductive wiring capabilities. Optical fiber cabling can also allow for higher distance cable runs to the small cells due to the lower loss of optical fiber, which can provide for enhanced centralization services.
    Type: Application
    Filed: October 23, 2017
    Publication date: March 1, 2018
    Inventors: Igor Berlin, William Patrick Cune
  • Publication number: 20180054260
    Abstract: Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 22, 2018
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Publication number: 20180026713
    Abstract: A communications system is disclosed that includes at least one remote expansion unit (RXU) that is operatively coupled to at least one remote unit (RU). The at least one RU is configured to receive a first and a second downlink optical radio frequency (RF) communications signal. The at least one RU comprises at least one optical-to-electrical (O/E) converter configured to convert the first and second downlink optical RF communications signals to respective first and second downlink electrical RF communications signals. The at least one RXU is configured to receive the second downlink electrical RF communications signal from the at least one RU. The RU may comprise selection circuitry configured to identify which of the downlink electrical communications signals are sent to the RXU. The RXU may be configured to provide an uplink electrical RF communications signal received from a client device to the RU.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 25, 2018
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene
  • Patent number: 9813164
    Abstract: Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 7, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Publication number: 20170317723
    Abstract: Embodiments disclosed herein include distributed antenna systems (DASs) supporting expanded, programmable communications services distribution to remote communications service sector areas. In one embodiment, the DAS includes a first programmable switch for distributing downlink communications signals into one or more communications service sector sets. The DAS further includes a second programmable switch configured to distribute the one or more communications service sector sets to one or more remote communications service sector areas. A configurable extender module is also included to provide expanded routing of communications service sector sets in the DAS.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 2, 2017
    Inventors: Igor Berlin, Dror Harel
  • Patent number: 9807722
    Abstract: Components, systems, and methods for determining propagation delay of communications in distributed antenna systems are disclosed. The propagation delay of communications signals distributed in the distributed antenna systems is determined. If desired, the propagation delay(s) can be determined on a per remote antenna unit basis for the distributed antenna systems. The propagation delay(s) can provided by the distributed antenna systems to a network or other system to be taken into consideration for communications services or operations that are based on communications signal delay. As another non-limiting example, propagation delay can be determined and controlled for each remote antenna unit to uniquely distinguish the remote antenna units. In this manner, the location of a client device communicating with a remote antenna unit can be determined within the communication range of the remote antenna unit.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 31, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Dragan Pikula, Michael Sauer, Gerald B. Schmidt
  • Patent number: 9806797
    Abstract: A system, and related methods and devices, is disclosed for increasing an output power of a frequency band in a distributed antenna system that includes at least one RXU module that is operatively coupled to at least one RAU module. A first group of the plurality of channels within a first frequency band may be allocated to the RAU module, and a second group of the plurality of the channels within the first frequency band may be allocated to the RXU module. The at least one RAU module may be configured to receive RF signals from the first group of the plurality of channels being used in the first frequency band, and the at least one RXU module may be configured to receive RF signals from the second group of the plurality of channels being used in the first frequency band. In this manner, the amount of composite power per channel is increased.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: October 31, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene
  • Patent number: 9800340
    Abstract: Unified optical fiber-based distributed antenna systems (DASs) for supporting small cell communications deployment from multiple small cell service providers are disclosed. The unified optical fiber-based DASs disclosed herein are configured to receive multiple small cell communications from different small cell service providers to be deployed over optical fiber to small cells in the DAS. In this manner, the same DAS architecture can be employed to distribute different small cell communications from different small cell service providers to small cells. Use of optical fiber for delivering small cell communications can reduce the risk of having to deploy new cabling if bandwidth needs for future small cell communication services exceeds conductive wiring capabilities. Optical fiber cabling can also allow for higher distance cable runs to the small cells due to the lower loss of optical fiber, which can provide for enhanced centralization services.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: October 24, 2017
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, William Patrick Cune
  • Publication number: 20170302340
    Abstract: A wireless distribution system (WDS) is configured for transmitting a downlink signal or for receiving an uplink signal. A computing device configured to serve as a client device to the WDS includes a memory; a multiple applications processor in communication with the memory and configured to execute one or more mobile applications; and a wireless service processor in communication with the multi applications processor for communicating via a corresponding wireless service with the WDS. The multi applications processor is configured to execute an instance of a data service to establish a connection with the WDS for a specified application process utilizing the wireless service to provide at least one datum on the WDS. In the method, an instance of a data service is executed to establish a connection with a WDS for a specified application process utilizing a wireless service to provide at least one datum on the WDS.
    Type: Application
    Filed: July 5, 2017
    Publication date: October 19, 2017
    Inventors: Igor Berlin, Aravind Chamarti, Yuval Zinger