Patents by Inventor Igor Polishchuk

Igor Polishchuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094835
    Abstract: In one embodiment, a stylus receives a first signal from a first electrode of the stylus, the stylus being operable to communicate wirelessly with a device through a touch sensor of the device; receives a second signal from a second electrode of the stylus, the second signal being a reference signal and the second electrode being a reference electrode; and compares the first signal with the second signal.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Kishore Sundara-Rajan, Yassar Ali, Igor Polishchuk, James D. Lyle
  • Patent number: 11874974
    Abstract: In one embodiment, a stylus receives a first signal from a first electrode of the stylus, the stylus being operable to communicate wirelessly with a device through a touch sensor of the device; receives a second signal from a second electrode of the stylus, the second signal being a reference signal and the second electrode being a reference electrode; and compares the first signal with the second signal.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: January 16, 2024
    Assignee: Wacom Co., Ltd.
    Inventors: Kishore Sundara-Rajan, Yassar Ali, Igor Polishchuk, James D. Lyle
  • Publication number: 20240012494
    Abstract: In one embodiment, a stylus comprising an accelerometer operable to detect an acceleration in response to a touch to the body and initiate a pre-determined function, a method of using same, and one or more non-transitory computer-readable storage media embodying logic.
    Type: Application
    Filed: September 25, 2023
    Publication date: January 11, 2024
    Inventors: Esat Yilmaz, Trond Jarle Pedersen, John Logan, Vemund Kval Bakken, Kishore Sundara-Rajan, Joo Yong Um, Igor Polishchuk
  • Patent number: 11868548
    Abstract: In one embodiment, a stylus with one or more electrodes and one or more computer-readable non-transitory storage media embodying logic for transmitting signals wirelessly to a device through a touch sensor of the device has one or more sensors for detecting movement of the stylus.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: January 9, 2024
    Assignee: Wacom Co., Ltd.
    Inventors: Esat Yilmaz, Trond Jarle Pedersen, John Logan, Vemund Kval Bakken, Kishore Sundara-Rajan, Joo Yong Um, Igor Polishchuk
  • Publication number: 20230251355
    Abstract: A lidar system that includes a laser source and a scannable mirror can also include a circuit that schedules a variable rate firing of a plurality of upcoming laser pulse shots by the laser source using a laser energy model as compared to a plurality of energy requirements applicable to the upcoming laser pulse shots, and wherein the laser energy model takes into consideration a retention of energy in the laser source after the upcoming laser pulse shots are fired and quantitatively predicts available energy amounts for the upcoming laser pulse shots from the laser source based on a history of prior laser pulse shots by the laser source. The laser energy model is capable of modeling the energy available for laser pulse shots in the laser source over very short time intervals (such as 10-100 nanoseconds).
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, IL WOONG Jung, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11721733
    Abstract: Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the memory transistor comprises an oxide-nitride-oxide (ONO) stack on a surface of a semiconductor substrate, and a high work function gate electrode formed over a surface of the ONO stack. Preferably, the gate electrode comprises a doped polysilicon layer, and the ONO stack comprises multi-layer charge storing layer including at least a substantially trap free bottom oxynitride layer and a charge trapping top oxynitride layer. More preferably, the device also includes a metal oxide semiconductor (MOS) logic transistor formed on the same substrate, the logic transistor including a gate oxide and a high work function gate electrode. In certain embodiments, the dopant is a P+ dopant and the memory transistor comprises N-type (NMOS) silicon-oxide-nitride-oxide-silicon (SONOS) transistor while the logic transistor a P-type (PMOS) transistor.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: August 8, 2023
    Assignee: LONGITUDE FLASH MEMORY SOLUTIONS LTD.
    Inventors: Igor Polishchuk, Sagy Charel Levy, Krishnaswamy Ramkumar
  • Patent number: 11686845
    Abstract: A lidar receiver that includes a photodetector circuit can be controlled so that the detection intervals used by the lidar receiver to detect returns from fired laser pulse shots are closely controlled. Such control over the detection intervals used by the lidar receiver allows for close coordination between a lidar transmitter and the lidar receiver where the lidar receiver is able to adapt to variable shot intervals of the lidar transmitter (including periods of high rate firing as well as periods of low rate firing). The lidar receiver can define the detection intervals based on a region in the field of view that a laser pulse shot is targeting (e.g., setting longer detection intervals for laser pulse shots targeting a horizon region, setting shorter detection intervals for laser pulse shots targeting a region that intersects within the ground within a relatively short distance of the lidar system).
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: June 27, 2023
    Assignee: AEYE, Inc.
    Inventors: Naveen Reddy, Allan Steinhardt, Luis Dussan, Joel Benscoter, Alex Liang, Philippe Feru, Igor Polishchuk
  • Patent number: 11686846
    Abstract: A lidar system having a lidar transmitter and lidar receiver that are in a bistatic arrangement with each other can be deployed in a climate-controlled compartment of a vehicle to reduce the exposure of the lidar system to harsher elements so it can operate in more advantageous environments with regards to factors such as temperature, moisture, etc. In an example embodiment, the bistatic lidar system can be connected to or incorporated within a rear view mirror assembly of a vehicle.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: June 27, 2023
    Assignee: AEYE, Inc.
    Inventors: Naveen Reddy, Allan Steinhardt, Luis Dussan, Joel Benscoter, Alex Liang, Philippe Feru, Igor Polishchuk
  • Patent number: 11675059
    Abstract: A lidar system that includes a laser source can be controlled to schedule the firing of laser pulse shots at range points in a field of view. As part of this scheduling, the system can prioritize which elevations will be targeted with shots before other elevations based on defined criteria. Examples of such criteria can include prioritizing elevations corresponding to a horizon, prioritizing elevations which contain objects of interest (e.g., nearby objects, fast moving objects, objects heading toward the lidar system, etc).
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: June 13, 2023
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Il Woong Jung, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Publication number: 20230148066
    Abstract: A lidar system comprises (1) a first lens having a first field of view that receives incident light from the first field of view, (2) a second lens having a second field of view that receives incident light from the second field of view, wherein the second lens is adjustable to cause an adjustment of the second field of view, and (3) a switch that controls which of the first and second lenses are used for detecting returns from laser pulse shots based on where the laser pulse shots are targeted in a field of view that encompasses the first and second fields of view.
    Type: Application
    Filed: December 17, 2021
    Publication date: May 11, 2023
    Inventors: Joel Benscoter, Luis Dussan, Allan Steinhardt, Philippe Feru, Igor Polishchuk
  • Patent number: 11635495
    Abstract: A lidar system comprises a lidar transmitter and a control circuit. The lidar transmitter fires laser pulse shots into a field of view and comprises a variable amplitude scan mirror for directing the laser pulse shots at targeted range points in the field of view (FOV). The control circuit (1) controls changes in a tilt amplitude of the variable amplitude scan mirror and (2) schedules the laser pulse shots according to a plurality of criteria, including criteria that take into account a settle time arising from controlled changes in the tilt amplitude. These controlled changes can include (1) a first tilt amplitude corresponding to a wide FOV coverage zone within the FOV and (2) a second tilt amplitude corresponding to a narrow FOV coverage zone within the FOV, wherein the second tilt amplitude is less than the first tilt amplitude.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: April 25, 2023
    Assignee: AEYE, Inc.
    Inventors: Joel Benscoter, Luis Dussan, Allan Steinhardt, Philippe Feru, Igor Polishchuk
  • Patent number: 11630188
    Abstract: A lidar system that includes a laser source and transmits laser pulses produced by the laser source toward range points in a field of view via a mirror that scans through a plurality of scan angles can use (1) a laser energy model to model the available energy in the laser source over time and (2) a mirror motion model to model motion of the mirror over time. A shot list for the upcoming laser pulse shots that are modeled according to the laser energy and mirror motion models can further be controlled based on eye safety and/or camera safety models to prevent the lidar system firing too much laser energy into defined spatial areas over defined time periods and thus reduce the risk of damage to eyes and/or cameras in the field of view.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: April 18, 2023
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Il Woong Jung, Alex Liang, Igor Polishchuk, Allan Steinhardt
  • Patent number: 11619740
    Abstract: A lidar receiver that includes a photodetector circuit can be controlled so that the detection intervals used by the lidar receiver to detect returns from fired laser pulse shots are closely controlled. Such control over the detection intervals used by the lidar receiver allows for close coordination between a lidar transmitter and the lidar receiver where the lidar receiver is able to adapt to variable shot intervals of the lidar transmitter (including periods of high rate firing as well as periods of low rate firing). The detection intervals can vary across different shots, and at least some of the detection intervals can be controlled to be of different durations than the shot intervals that correspond to such detection intervals.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 4, 2023
    Assignee: AEYE, Inc.
    Inventors: Naveen Reddy, Allan Steinhardt, Luis Dussan, Joel Benscoter, Alex Liang, Philippe Feru, Igor Polishchuk
  • Patent number: 11604264
    Abstract: A lidar system comprises a first lens, a second lens, and a switch. The first lens has a first field of view that receives incident light from the first field of view. The second lens has a second field of view that receives incident light from the second field of view, wherein the second field of view is encompassed by and narrower than the first field of view. The switch controls which of the first and second lenses are used for detecting returns from laser pulse shots based on where the laser pulse shots are targeted in a field of view that encompasses the first and second fields of view. The switch may comprise an optical switch or an electronic switch.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: March 14, 2023
    Assignee: AEYE, Inc.
    Inventors: Joel Benscoter, Luis Dussan, Allan Steinhardt, Philippe Feru, Igor Polishchuk
  • Publication number: 20230077062
    Abstract: In one embodiment, a stylus with one or more electrodes and one or more computer-readable non-transitory storage media embodying logic for transmitting signals wirelessly to a device through a touch sensor of the device has one or more sensors for detecting movement of the stylus.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Esat Yilmaz, Trond Jarle Pedersen, John Logan, Vemund Kval Bakken, Kishore Sundara-Rajan, Joo Yong Um, Igor Polishchuk
  • Publication number: 20230044929
    Abstract: A lidar system comprising (1) a first lens having a first field of view (FOV) that receives incident light from the first FOV, (2) a second lens having a second FOV that receives incident light from the second FOV, wherein the second field of view is encompassed by and narrower than the first FOV, and (3) photodetector circuitry that senses incident light passed by the first and second lenses. The photodetector circuitry can include multiple channels of readout circuitry for reading out (1) a first return signal in a first of the channels for detecting a return from a laser pulse shot that targets a location in the second FOV, wherein the first return signal is based on incident light passed by the first lens, and (2) a second return signal in a second of the channels for detecting the return, wherein the second return signal is based on incident light passed by the second lens.
    Type: Application
    Filed: December 17, 2021
    Publication date: February 9, 2023
    Inventors: Joel Benscoter, Luis Dussan, Allan Steinhardt, Philippe Feru, Igor Polishchuk
  • Publication number: 20230023852
    Abstract: An example memory device includes a channel positioned between and electrically connecting a first diffusion region and a second diffusion region, and a tunnel dielectric layer, a multi-layer charge trapping layer, and a blocking dielectric layer disposed between the gate structure and the channel. The multi-layer charge trapping layer includes a first dielectric layer disposed abutting a second dielectric layer and an anti-tunneling layer disposed between the first and second dielectric layers. The anti-tunneling layer includes an oxide layer. The first dielectric layer includes oxygen-rich nitride and the second dielectric layer includes oxygen-lean nitride.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 26, 2023
    Inventors: Igor Polishchuk, Sagy Charel Levy, Krishnaswamy Ramkumar
  • Patent number: 11520419
    Abstract: In one embodiment, a stylus with one or more electrodes and one or more computer-readable non-transitory storage media embodying logic for transmitting signals wirelessly to a device through a touch sensor of the device has one or more sensors for detecting movement of the stylus.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: December 6, 2022
    Assignee: Wacom Co., Ltd.
    Inventors: Esat Yilmaz, Trond Jarle Pedersen, John Logan, Vemund Kval Bakken, Kishore Sundara-Rajan, Joo Yong Um, Igor Polishchuk
  • Publication number: 20220373654
    Abstract: A lidar system comprises a first lens, a second lens, and a switch. The first lens has a first field of view that receives incident light from the first field of view. The second lens has a second field of view that receives incident light from the second field of view, wherein the second field of view is encompassed by and narrower than the first field of view. The switch controls which of the first and second lenses are used for detecting returns from laser pulse shots based on where the laser pulse shots are targeted in a field of view that encompasses the first and second fields of view. The switch may comprise an optical switch or an electronic switch.
    Type: Application
    Filed: December 17, 2021
    Publication date: November 24, 2022
    Inventors: Joel Benscoter, Luis Dussan, Allan Steinhardt, Philippe Feru, Igor Polishchuk
  • Patent number: 11493610
    Abstract: A lidar system that includes a laser source and a scannable mirror can be controlled to adaptively schedule the firing of laser pulse shots at range points in a field of view. A first plurality of laser pulse shots that are fired during a scan of the mirror in a first scan direction can trigger the detection of a region of interest in the field of view. In response to this detection, a second plurality of laser shots targeting the region of interest can be scheduled for the next return scan of the mirror in the opposite direction.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: November 8, 2022
    Assignee: AEYE, Inc.
    Inventors: Philippe Feru, Luis Dussan, Joel Benscoter, Alex Liang, Igor Polishchuk, Allan Steinhardt