Patents by Inventor Igor SPOKOINYI

Igor SPOKOINYI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9537198
    Abstract: Embodiments of a low-complexity and potentially physically small wideband impedance transformer that can be used in a combining network of a wideband Doherty amplifier are disclosed. In one embodiment, a wideband Doherty amplifier includes Doherty amplifier circuitry and a wideband combining network. The wideband combining network includes a wideband quarter-wave impedance transformer that includes a quarter-wave impedance transformer and compensation circuitry connected in parallel with the quarter-wave impedance transformer at a low-impedance end of the quarter-wave impedance transformer. The compensation circuitry is configured to reduce a total quality factor of the wideband quarter-wave impedance transformer as compared to a quality factor of the quarter-wave impedance transformer, which in turn increases a bandwidth of the wideband quarter-wave impedance transformer, and thus a bandwidth of the wideband Doherty amplifier.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: January 3, 2017
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Sashieka Seneviratne, Igor Spokoinyi
  • Patent number: 9318788
    Abstract: Microstrip directional couplers and methods of their design are disclosed. According to one aspect, a microstrip directional coupler has a substrate of a first thickness. Disposed upon the substrate is a first microstrip having a first portion of a first length and a second microstrip having a second portion of a second length. The first and second microstrips are positioned to exhibit a gap between the first portion and the second portion. The first and second lengths are less than one sixteenth of a wavelength at the lowest frequency of operation of the directional coupler. The gap is less than a predetermined amount to reduce a difference in phase velocity of even and odd modes of the microstrip directional coupler.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: April 19, 2016
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Igor Spokoinyi
  • Patent number: 9112458
    Abstract: Embodiments of a low-complexity and potentially physically small wideband impedance transformer that can be used in a combining network of a wideband Doherty amplifier are disclosed. In one embodiment, a wideband Doherty amplifier includes Doherty amplifier circuitry and a wideband combining network. The wideband combining network includes a wideband quarter-wave impedance transformer that includes a quarter-wave impedance transformer and compensation circuitry connected in parallel with the quarter-wave impedance transformer at a low-impedance end of the quarter-wave impedance transformer. The compensation circuitry is configured to reduce a total quality factor of the wideband quarter-wave impedance transformer as compared to a quality factor of the quarter-wave impedance transformer, which in turn increases a bandwidth of the wideband quarter-wave impedance transformer, and thus a bandwidth of the wideband Doherty amplifier.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 18, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Sashieka Seneviratne, Igor Spokoinyi
  • Publication number: 20150091667
    Abstract: Embodiments of a low-complexity and potentially physically small wideband impedance transformer that can be used in a combining network of a wideband Doherty amplifier are disclosed. In one embodiment, a wideband Doherty amplifier includes Doherty amplifier circuitry and a wideband combining network. The wideband combining network includes a wideband quarter-wave impedance transformer that includes a quarter-wave impedance transformer and compensation circuitry connected in parallel with the quarter-wave impedance transformer at a low-impedance end of the quarter-wave impedance transformer. The compensation circuitry is configured to reduce a total quality factor of the wideband quarter-wave impedance transformer as compared to a quality factor of the quarter-wave impedance transformer, which in turn increases a bandwidth of the wideband quarter-wave impedance transformer, and thus a bandwidth of the wideband Doherty amplifier.
    Type: Application
    Filed: June 16, 2014
    Publication date: April 2, 2015
    Inventors: Sashieka Seneviratne, Igor Spokoinyi
  • Publication number: 20150091651
    Abstract: Embodiments of a low-complexity and potentially physically small wideband impedance transformer that can be used in a combining network of a wideband Doherty amplifier are disclosed. In one embodiment, a wideband Doherty amplifier includes Doherty amplifier circuitry and a wideband combining network. The wideband combining network includes a wideband quarter-wave impedance transformer that includes a quarter-wave impedance transformer and compensation circuitry connected in parallel with the quarter-wave impedance transformer at a low-impedance end of the quarter-wave impedance transformer. The compensation circuitry is configured to reduce a total quality factor of the wideband quarter-wave impedance transformer as compared to a quality factor of the quarter-wave impedance transformer, which in turn increases a bandwidth of the wideband quarter-wave impedance transformer, and thus a bandwidth of the wideband Doherty amplifier.
    Type: Application
    Filed: December 2, 2013
    Publication date: April 2, 2015
    Applicant: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Sashieka Seneviratne, Igor Spokoinyi
  • Publication number: 20140361953
    Abstract: Microstrip directional couplers and methods of their design are disclosed. According to one aspect, a microstrip directional coupler has a substrate of a first thickness. Disposed upon the substrate is a first microstrip having a first portion of a first length and a second microstrip having a second portion of a second length. The first and second microstrips are positioned to exhibit a gap between the first portion and the second portion. The first and second lengths are less than one sixteenth of a wavelength at the lowest frequency of operation of the directional coupler. The gap is less than a predetermined amount to reduce a difference in phase velocity of even and odd modes of the microstrip directional coupler.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 11, 2014
    Inventor: Igor SPOKOINYI