Patents by Inventor Igor V. Fomenkov

Igor V. Fomenkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140146387
    Abstract: A device is described herein which may comprise an optical amplifier having a gain band including wavelengths ?1 and ?2, with ?1??2; a pre-pulse seed laser having a tuning module for tuning a pre-pulse output to wavelength ?1; a main pulse seed laser generating a laser output having wavelength, ?2; and a beam combiner for directing the pre-pulse output and the main pulse output on a common path through the optical amplifier.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 29, 2014
    Applicant: CYMER, LLC
    Inventors: Kai-Chung Hou, Richard L. Sandstrom, William N. Partlo, Daniel J.W. Brown, Igor V. Fomenkov
  • Publication number: 20140110609
    Abstract: An extreme-ultraviolet (EUV) light source is described herein comprising an optic; a primary EUV light radiator generating an EUV light emitting plasma and producing a deposit on said optic; and a cleaning system comprising a gas and a secondary light radiator, the secondary light radiator generating a laser produced plasma and producing a cleaning species with the gas.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 24, 2014
    Applicant: CYMER, LLC
    Inventors: Alexander N. Bykanov, Silvia De Dea, Alexander I. Ershov, Vladimir B. Fleurov, Igor V. Fomenkov, William N. Partlo
  • Patent number: 8704200
    Abstract: An EUV light source is disclosed which may comprise a plurality of targets, e.g., tin droplets, and a system generating pre-pulses and main-pulses with the pre-pulses for irradiating targets to produce expanded targets. The system may further comprise a continuously pumped laser device generating the main pulses with the main pulses for irradiating expanded targets to produce a burst of EUV light pulses. The system may also have a controller varying at least one pre-pulse parameter during the burst of EUV light pulses. In addition, the EUV light source may also include an instrument measuring an intensity of at least one EUV light pulse within a burst of EUV light pulses and providing a feedback signal to the controller to vary at least one pre-pulse parameter during the burst of EUV light pulses to produce a burst of EUV pulses having a pre-selected dose.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: April 22, 2014
    Assignee: Cymer, LLC
    Inventors: Alexander N. Bykanov, Igor V. Fomenkov
  • Publication number: 20140103229
    Abstract: An extreme ultraviolet light system and method includes a drive laser, a chamber including an extreme ultraviolet light collector and a target material dispenser including an adjustable target material outlet capable of outputting multiple portions of target material along a target material path. Also included: a drive laser steering device, a detection system including at least one detector and a controller coupled to the target material dispenser, the detector system and the drive laser steering device. The controller includes logic for detecting a location of the first portion of target material from the first light reflected from the first portion of target material and logic for adjusting the target material dispenser outlet to output a subsequent portion of target material to a waist of the focused drive laser. A system and a method for optimizing an extreme ultraviolet light output is also disclosed.
    Type: Application
    Filed: December 17, 2013
    Publication date: April 17, 2014
    Applicant: Cymer, LLC
    Inventors: Christopher C. Chroback, William N. Partlo, Igor V Fomenkov, Alexander I. Ershov, James H. Crouch
  • Patent number: 8680495
    Abstract: Techniques are described that enhance power from an extreme ultraviolet light source with feedback from a target material that has been modified prior to entering a target location into a spatially-extended target distribution or expanded target. The feedback from the spatially-extended target distribution provides a nonresonant optical cavity because the geometry of the path over which feedback occurs, such as the round-trip length and direction, can change in time, or the shape of the spatially-extended target distribution may not provide a smooth enough reflectance. However, it may be possible that the feedback from the spatially-extended target distribution provides a resonant and coherent optical cavity if the geometric and physical constraints noted above are overcome. In any case, the feedback can be generated using spontaneously emitted light that is produced from a non-oscillator gain medium.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 25, 2014
    Assignee: Cymer, LLC
    Inventors: Yezheng Tao, Robert Jay Rafac, Igor V. Fomenkov, Daniel J. W. Brown
  • Publication number: 20140048099
    Abstract: A system and method for an extreme ultraviolet light chamber comprising a collector mirror, a cooling system coupled to a backside of the collector mirror operative to cool a reflective surface of the collector mirror and a buffer gas source coupled to the extreme ultraviolet light chamber.
    Type: Application
    Filed: October 23, 2013
    Publication date: February 20, 2014
    Applicant: Cymer, LLC
    Inventors: William N. Partlo, Igor V. Fomenkov
  • Patent number: 8653437
    Abstract: A device is disclosed herein which may comprise a droplet generator producing droplets of target material; a sensor providing an intercept time signal when a droplet reaches a preselected location; a delay circuit coupled with said sensor, the delay circuit generating a trigger signal delayed from the intercept time signal; a laser source responsive to a trigger signal to produce a laser pulse; and a system controlling said delay circuit to provide a trigger signal delayed from the intercept time by a first delay time to generate a light pulse that is focused on a droplet and a trigger signal delayed from the intercept time by a second delay time to generate a light pulse which is not focused on a droplet.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: February 18, 2014
    Assignee: Cymer, LLC
    Inventors: William N. Partlo, Richard L. Sandstrom, Daniel J. W. Brown, Igor V. Fomenkov
  • Patent number: 8653491
    Abstract: An extreme ultraviolet light system and method includes a drive laser, a chamber including an extreme ultraviolet light collector and a target material dispenser including an adjustable target material outlet capable of outputting multiple portions of target material along a target material path. Also included: a drive laser steering device, a detection system including at least one detector and a controller coupled to the target material dispenser, the detector system and the drive laser steering device. The controller includes logic for detecting a location of the first portion of target material from the first light reflected from the first portion of target material and logic for adjusting the target material dispenser outlet to output a subsequent portion of target material to a waist of the focused drive laser. A system and a method for optimizing an extreme ultraviolet light output is also disclosed.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: February 18, 2014
    Assignee: Cymer, Inc.
    Inventors: William N. Partlo, Igor V. Fomenkov, Alexander I. Ershov, Chris C. Chrobak, James H. Crouch
  • Patent number: 8654438
    Abstract: A device is described herein which may comprise an optical amplifier having a gain band including wavelengths ?1 and ?2, with ?1??2; a pre-pulse seed laser having a tuning module for tuning a pre-pulse output to wavelength ?1; a main pulse seed laser generating a laser output having wavelength, ?2; and a beam combiner for directing the pre-pulse output and the main pulse output on a common path through the optical amplifier.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: February 18, 2014
    Assignee: Cymer, LLC
    Inventors: Kai-Chung Hou, Richard L. Sandstrom, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov
  • Patent number: 8633459
    Abstract: An extreme-ultraviolet (EUV) light source is described herein comprising an optic; a primary EUV light radiator generating an EUV light emitting plasma and producing a deposit on said optic; and a cleaning system comprising a gas and a secondary light radiator, the secondary light radiator generating a laser produced plasma and producing a cleaning species with the gas.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: January 21, 2014
    Assignee: Cymer, LLC
    Inventors: Alexander N. Bykanov, Silvia De Dea, Alexander I. Ershov, Vladimir B. Fleurov, Igor V. Fomenkov, William N. Partlo
  • Publication number: 20130321901
    Abstract: A device comprising a laser source producing a continuous output on a beam path and an amplifier is disclosed. The device further includes a partially transmissive, partially reflective optic disposed on said beam path between said laser source and said amplifier. The device further includes a droplet generator positioned to deliver a droplet moving on a path intersecting said beam path, the droplet reflecting light to establish an optical cavity with said optic.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: CYMER, LLC
    Inventors: Alexander I. Ershov, Jerzy R. Hoffman, Norbert R. Bowering, Igor V. Fomenkov
  • Patent number: 8598549
    Abstract: In a first aspect, a method of fabricating an EUV light source mirror is disclosed which may comprise the acts/steps of providing a plurality of discrete substrates; coating each substrate with a respective multilayer coating; securing the coated substrates in an arrangement wherein each coated substrate is oriented to a common focal point; and thereafter polishing at least one of the multilayer coatings. In another aspect, an optic for use with EUV light is disclosed which may comprise a substrate; a smoothing layer selected from the group of materials consisting of Si, C, Si3N4, B4C, SiC and Cr, the smoothing layer material being deposited using highly energetic deposition conditions and a multilayer dielectric coating. In another aspect, a corrosion resistant, multilayer coating for an EUV mirror may comprise alternating layers of Si and a compound material having nitrogen and a 5th period transition metal.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: December 3, 2013
    Assignee: Cymer, LLC
    Inventors: Norbert R. Bowering, Igor V. Fomenkov
  • Patent number: 8575575
    Abstract: A system and method for an extreme ultraviolet light chamber comprising a collector mirror, a cooling system coupled to a backside of the collector mirror operative to cool a reflective surface of the collector mirror and a buffer gas source coupled to the extreme ultraviolet light chamber.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: November 5, 2013
    Inventors: William N. Partlo, Igor V. Fomenkov
  • Patent number: 8514486
    Abstract: A device comprising a laser source producing a continuous output on a beam path and an amplifier is disclosed. The device further includes a partially transmissive, partially reflective optic disposed on said beam path between said laser source and said amplifier. The device further includes a droplet generator positioned to deliver a droplet moving on a path intersecting said beam path, the droplet reflecting light to establish an optical cavity with said optic.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: August 20, 2013
    Assignee: Cymer LLC
    Inventors: Alexander I. Ershov, Igor V. Fomenkov, Norbert R. Bowering, Jerzy R. Hoffman
  • Patent number: 8462425
    Abstract: As disclosed herein, in a first aspect, a device may comprise: an oscillator producing a light output on a beam path; a target material for interaction with light on the beam path at an irradiation site; a beam delay on the beam path the beam delay having a beam folding optical arrangement; and a switch positioned along the beam path and interposed between the oscillator and the beam delay; the switch closable to divert at least a portion of light on the beam path from the beam path, the switch having close time, t1 and the beam path having a length, L1, along the path from the switch to the irradiation site; with t1<cL1, where c is the speed of light on the path, to protect the oscillator.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 11, 2013
    Assignee: Cymer, Inc.
    Inventors: Kai-Chung Hou, Richard L. Sandstrom, William N. Partlo, Daniel J. W. Brown, Igor V. Fomenkov
  • Patent number: 8461560
    Abstract: An apparatus and method is disclosed which includes or employs an EUV light source comprising a laser device outputting a laser beam, a beam delivery system directing the laser beam to an irradiation site, and a material for interaction with the laser beam at the irradiation site to create an EUV light emitting plasma for use in processing substrates.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: June 11, 2013
    Assignee: Cymer, Inc.
    Inventors: Alexander I. Ershov, Alexander N. Bykanov, Oleh V. Khodykin, Igor V. Fomenkov
  • Publication number: 20120313016
    Abstract: An extreme-ultraviolet (EUV) light source comprising an optic, a target material, and a laser beam passing through said optic along a beam path to irradiate said target material. The EUV light source further includes a system generating a gas flow directed toward said target material along said beam path, said system having a tapering member surrounding a volume and a plurality of gas lines, each gas line outputting a gas stream into said volume.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventors: Vladimir B. Fleurov, William N. Partlo, Igor V. Fomenkov, Alexander I. Ershov
  • Publication number: 20120305810
    Abstract: Devices and corresponding methods of use are described herein that may include an enclosing structure defining a closed loop flow path and a system generating a plasma at a plasma site, e.g. laser produced plasma system, where the plasma site may be in fluid communication with the flow path. For the device, a gas may be disposed in the enclosing structure which may include an ion-stopping buffer gas and/or an etchant. A pump may be provided to force the gas through the closed loop flow path. One or more heat exchangers removing heat from gas flowing in the flow path may be provided. In some arrangements, a filter may be used to remove at least a portion of a target species from gas flowing in the flow path.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 6, 2012
    Inventors: Alexander I. Ershov, Igor V. Fomenkov
  • Publication number: 20120292527
    Abstract: A filter is used in a target material supply apparatus and includes a sheet having a first flat surface and a second opposing flat surface, and a plurality of through holes. The first flat surface is in fluid communication with a reservoir that holds a target mixture that includes a target material and non-target particles. The through holes extend from the second flat surface and are fluidly coupled at the second flat surface to an orifice of a nozzle. The sheet has a surface area that is exposed to the target mixture, the exposed surface area being at least a factor of one hundred less than an exposed surface area of a sintered filter having an equivalent transverse extent to that of the sheet.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 22, 2012
    Applicant: CYMER, INC.
    Inventors: Igor V. Fomenkov, William N. Partlo, Georgiy O. Vaschenko, William Oldham
  • Patent number: 8314398
    Abstract: A method is disclosed for in-situ monitoring of an EUV mirror to determine a degree of optical degradation. The method may comprise the steps/acts of irradiating at least a portion of the mirror with light having a wavelength outside the EUV spectrum, measuring at least a portion of the light after the light has reflected from the mirror, and using the measurement and a pre-determined relationship between mirror degradation and light reflectivity to estimate a degree of multi-layer mirror degradation. Also disclosed is a method for preparing a near-normal incidence, EUV mirror which may comprise the steps/acts of providing a metallic substrate, diamond turning a surface of the substrate, depositing at least one intermediate material overlying the surface using a physical vapor deposition technique, and depositing a multi-layer mirror coating overlying the intermediate material.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 20, 2012
    Assignee: Cymer, Inc.
    Inventors: Norbert R. Bowering, Igor V. Fomenkov, Oleh V. Khodykin, Alexander N. Bykanov