Patents by Inventor Ilya Bystryak

Ilya Bystryak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230157748
    Abstract: Devices, systems, and methods of the present disclosure are directed to controlling distribution of electrical energy moving from an ablation electrode at a treatment site within a patient to a plurality of return electrodes on skin of the patient. Control over the distribution of electrical energy moving from the ablation electrode to the plurality of return electrodes can reduce or eliminate the need for manual intervention (e.g., repositioning the plurality of return electrodes on the skin of the patient, repositioning the patient, etc.) to achieve a suitable distribution of the electrical energy. Additionally, or alternatively, the devices, systems, and methods of the present disclosure can respond rapidly and automatically to changes in distribution of the electrical energy to reduce the likelihood and magnitude of inadvertent changes in the distribution of electrical energy over the course of a medical procedure.
    Type: Application
    Filed: September 27, 2022
    Publication date: May 25, 2023
    Inventors: Doron Harlev, Ilya Bystryak, Alexander Shrabstein, Yanko K. Sheiretov, Joseph Harlev, Paul B. Hultz
  • Patent number: 11490958
    Abstract: Devices, systems, and methods of the present disclosure are directed to controlling distribution of electrical energy moving from an ablation electrode at a treatment site within a patient to a plurality of return electrodes on skin of the patient. Control over the distribution of electrical energy moving from the ablation electrode to the plurality of return electrodes can reduce or eliminate the need for manual intervention (e.g., repositioning the plurality of return electrodes on the skin of the patient, repositioning the patient, etc.) to achieve a suitable distribution of the electrical energy. Additionally, or alternatively, the devices, systems, and methods of the present disclosure can respond rapidly and automatically to changes in distribution of the electrical energy to reduce the likelihood and magnitude of inadvertent changes in the distribution of electrical energy over the course of a medical procedure.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: November 8, 2022
    Assignee: Affera, Inc.
    Inventors: Doron Harlev, Ilya Bystryak, Alexander Shrabstein, Yanko K. Sheiretov, Joseph Harlev, Paul B. Hultz
  • Publication number: 20200069365
    Abstract: Devices, systems, and methods of the present disclosure are directed to controlling distribution of electrical energy moving from an ablation electrode at a treatment site within a patient to a plurality of return electrodes on skin of the patient. Control over the distribution of electrical energy moving from the ablation electrode to the plurality of return electrodes can reduce or eliminate the need for manual intervention (e.g., repositioning the plurality of return electrodes on the skin of the patient, repositioning the patient, etc.) to achieve a suitable distribution of the electrical energy. Additionally, or alternatively, the devices, systems, and methods of the present disclosure can respond rapidly and automatically to changes in distribution of the electrical energy to reduce the likelihood and magnitude of inadvertent changes in the distribution of electrical energy over the course of a medical procedure.
    Type: Application
    Filed: March 8, 2018
    Publication date: March 5, 2020
    Inventors: Doron Harlev, Ilya Bystryak, Alexander Shrabstein, Yanko K. Sheiretov, Joseph Harlev, Paul B. Hultz
  • Patent number: 9023028
    Abstract: An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 5, 2015
    Assignee: Smith & Nephew, Inc.
    Inventors: Ilya Bystryak, Lim Cheung
  • Patent number: 8912835
    Abstract: A method for controlling pulsed power that includes measuring a first pulse of power from a power amplifier to obtain data. The method also includes generating a first signal to adjust a second pulse of delivered power, the first signal correlated to the data to minimize a power difference between a power set point and a substantially stable portion of the second pulse. The method also includes generating a second signal to adjust the second pulse of delivered power, the second signal correlated to the data to minimize an amplitude difference between a peak of the second pulse and the substantially stable portion of the second pulse.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: December 16, 2014
    Assignee: MKS Instruments Inc.
    Inventors: Siddarth Nagarkatti, Feng Tian, David Lam, Abdul Rashid, Souheil Benzerrouk, Ilya Bystryak, David Menzer, Jack J. Schuss, Jesse E. Ambrosina
  • Patent number: 8710926
    Abstract: A system and method are provided for delivering power to a dynamic load. The system includes a power supply providing DC power having a substantially constant power open loop response, a power amplifier for converting the DC power to RF power, a sensor for measuring voltage, current and phase angle between voltage and current vectors associated with the RF power, an electrically controllable impedance matching system to modify the impedance of the power amplifier to at least a substantially matched impedance of a dynamic load, and a controller for controlling the electrically controllable impedance matching system. The system further includes a sensor calibration measuring module for determining power delivered by the power amplifier, an electronic matching system calibration module for determining power delivered to a dynamic load, and a power dissipation module for calculating power dissipated in the electrically controllable impedance matching system.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: April 29, 2014
    Assignee: MKS Instruments, Inc.
    Inventors: Siddharth P. Nagarkatti, Yevgeniy Barskiy, Feng Tian, Ilya Bystryak
  • Patent number: 8659335
    Abstract: A method for controlling pulsed power that includes measuring a first pulse of power from a power amplifier to obtain data. The method also includes generating a first signal to adjust a second pulse of delivered power, the first signal correlated to the data to minimize a power difference between a power set point and a substantially stable portion of the second pulse. The method also includes generating a second signal to adjust the second pulse of delivered power, the second signal correlated to the data to minimize an amplitude difference between a peak of the second pulse and the substantially stable portion of the second pulse.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: February 25, 2014
    Assignee: MKS Instruments, Inc.
    Inventors: Siddharth Nagarkatti, Feng Tian, David Lam, Abdul Rashid, Souheil Benzerrouk, Ilya Bystryak, David Menzer, Jack J. Schuss, Jesse E. Ambrosina
  • Publication number: 20130331834
    Abstract: An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
    Type: Application
    Filed: August 1, 2013
    Publication date: December 12, 2013
    Inventors: Ilya Bystryak, Lim Cheung
  • Patent number: 8500729
    Abstract: An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: August 6, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: Ilya Bystryak, Lim Cheung
  • Publication number: 20130138100
    Abstract: An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
    Type: Application
    Filed: January 24, 2013
    Publication date: May 30, 2013
    Applicant: Smith & Nephew, Inc.
    Inventors: Ilya Bystryak, Lim Cheung
  • Patent number: 8388615
    Abstract: An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: March 5, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: Ilya Bystryak, Lim Cheung
  • Publication number: 20120262064
    Abstract: A system and method are provided for delivering power to a dynamic load. The system includes a power supply providing DC power having a substantially constant power open loop response, a power amplifier for converting the DC power to RF power, a sensor for measuring voltage, current and phase angle between voltage and current vectors associated with the RF power, an electrically controllable impedance matching system to modify the impedance of the power amplifier to at least a substantially matched impedance of a dynamic load, and a controller for controlling the electrically controllable impedance matching system. The system further includes a sensor calibration measuring module for determining power delivered by the power amplifier, an electronic matching system calibration module for determining power delivered to a dynamic load, and a power dissipation module for calculating power dissipated in the electrically controllable impedance matching system.
    Type: Application
    Filed: February 8, 2012
    Publication date: October 18, 2012
    Applicant: MKS Instruments, Inc.
    Inventors: Siddharth P. Nagarkatti, Yevgeniy Barskiy, Feng Tian, Ilya Bystryak
  • Publication number: 20100327927
    Abstract: A method for controlling pulsed power that includes measuring a first pulse of power from a power amplifier to obtain data. The method also includes generating a first signal to adjust a second pulse of delivered power, the first signal correlated to the data to minimize a power difference between a power set point and a substantially stable portion of the second pulse. The method also includes generating a second signal to adjust the second pulse of delivered power, the second signal correlated to the data to minimize an amplitude difference between a peak of the second pulse and the substantially stable portion of the second pulse.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 30, 2010
    Applicant: MKS Instruments, Inc.
    Inventors: Siddharth Nagarkatti, Feng Tian, David Lam, Abdul Rashid, Souheil Benzerrouk, Ilya Bystryak, David Menzer, Jack J. Schuss, Jesse E. Ambrosina
  • Patent number: 7764140
    Abstract: A system and method are provided for delivering power to a dynamic load. The system includes a power supply providing DC power having a substantially constant power open loop response, a power amplifier for converting the DC power to RF power, a sensor for measuring voltage, current and phase angle between voltage and current vectors associated with the RF power, an electrically controllable impedance matching system to modify the impedance of the power amplifier to at least a substantially matched impedance of a dynamic load, and a controller for controlling the electrically controllable impedance matching system. The system further includes a sensor calibration measuring module for determining power delivered by the power amplifier, an electronic matching system calibration module for determining power delivered to a dynamic load, and a power dissipation module for calculating power dissipated in the electrically controllable impedance matching system.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: July 27, 2010
    Assignee: MKS Instruments, Inc.
    Inventors: Siddharth P. Nagarkatti, Michael Kishinevsky, Ali Shajii, Timothy E. Kalvaitis, William S. McKinney, Jr., Daniel Goodman, William M. Holber, John A. Smith, Ilya Bystryak
  • Patent number: 7755300
    Abstract: A method and apparatus for controlling a power supply to prevent instabilities due to dynamic loads in RF plasma processing systems, operating at frequencies of from 1 MHz and up 1 MHz and above. The apparatus includes a power source, a power converter receiving power from the source, the power converter providing a constant output power controlled by varying at least one of input voltage or switching frequency, and an RF generator receiving constant power from the power converter.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: July 13, 2010
    Assignee: MKS Instruments, Inc.
    Inventors: Michael Kishinevsky, Ilya Bystryak, Alan R. Millner
  • Publication number: 20100145329
    Abstract: An electrosurgical device includes a plurality of electrodes arranged to form a tissue treatment surface and a power supply. The power supply is configured to deliver a first drive signal with a first phase to at least a first one of the plurality of electrodes and a second drive signal with a second phase to at least a second one of the plurality of electrodes such that an electric field extends from the tissue treatment surface, where the first phase and the second phase are different. The power supply is further configured to receive an input from an operator of the electrosurgical device, and adjust the first phase or the second phase such that an aspect of the electric field extending from the tissue treatment surface changes in response to the input from the operator.
    Type: Application
    Filed: October 28, 2009
    Publication date: June 10, 2010
    Applicant: Smith & Nephew, Inc.
    Inventors: Ilya Bystryak, Lim Cheung
  • Publication number: 20100130976
    Abstract: A first probe and a second probe are coupled to a source of electrical energy. The first probe and the second probe are each configured to create a lesion when inserted into tissue and electrical energy is applied from the source of electrical energy. A first switch is coupled to the first probe and couples the first probe to ground when in a closed state. A second switch is coupled to the second probe and couples the second probe to ground when in a closed state. A control system is configured to receive an indication of a first parameter at the first probe and control the first switch based on the first parameter. The control system is also configured to receive an indication of a second parameter at the second probe and control the second switch based on the second parameter.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 27, 2010
    Applicant: Smith & Nephew Inc.
    Inventors: Ilya Bystryak, Stanislav Polipas
  • Patent number: 7616462
    Abstract: A control circuit for a switching power supply reacts to an over current condition in the switching power supply to bring its operating point to a safe condition. The control circuit senses both the direction and the magnitude of the load current in the switching power supply, and then uses this sensed information to control the active power switches in the switching power supply. In an over current condition, the switches are controlled to actively drive the load current toward zero, even if the sensed information is delayed or heavily filtered, or the switch signals from the control circuit are delayed in reaching the switches. The resulting operation of the switching power supply is more resistant to abnormal load conditions and is maintained in the presence of transient short circuits or arcs. The switching power supply hardware is also better protected.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: November 10, 2009
    Assignee: MKS Instruments, Inc.
    Inventors: Alan Roy Millner, Ilya Bystryak
  • Publication number: 20080179948
    Abstract: A system and method are provided for delivering power to a dynamic load. The system includes a power supply providing DC power having a substantially constant power open loop response, a power amplifier for converting the DC power to RF power, a sensor for measuring voltage, current and phase angle between voltage and current vectors associated with the RF power, an electrically controllable impedance matching system to modify the impedance of the power amplifier to at least a substantially matched impedance of a dynamic load, and a controller for controlling the electrically controllable impedance matching system. The system further includes a sensor calibration measuring module for determining power delivered by the power amplifier, an electronic matching system calibration module for determining power delivered to a dynamic load, and a power dissipation module for calculating power dissipated in the electrically controllable impedance matching system.
    Type: Application
    Filed: February 1, 2008
    Publication date: July 31, 2008
    Applicant: MKS INSTRUMENTS, INC.
    Inventors: Siddharth P. Nagarkatti, Yevgeniy Barskiy, Feng Tian, Ilya Bystryak
  • Patent number: 7353771
    Abstract: According to a first aspect, a power supply and a method of providing power for igniting a plasma in a reactive gas generator is provided that includes (i) coupling a series resonant circuit that comprises a resonant inductor and a resonant capacitor between a switching power source and a transformer, the transformer having a transformer primary and a plasma secondary; (ii) providing a substantially resonant AC voltage from the resonant capacitor across the transformer primary, thereby inducing a substantially resonant current within the transformer primary to generate the plasma secondary; and (iii) upon generation of the plasma secondary, the resonant inductor limiting current flowing to the switching power supply. According to another aspect, bipolar high voltage ignition electrodes can be used in conjunction with inductive energy coupling to aid in plasma ignition.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: April 8, 2008
    Assignee: MKS Instruments, Inc.
    Inventors: Alan Millner, Thomas Alexander, Ilya Bystryak, Ken Tran, Madhuwanti Joshi