Patents by Inventor Imran Bhutta

Imran Bhutta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11335540
    Abstract: In one embodiment, an impedance matching network includes a mechanically variable capacitor (MVC), a second variable capacitor, and a control circuit. The control circuit carries out a first process of determining a second variable capacitor configuration for reducing a reflected power at the RF source output, and altering the second variable capacitor to the second variable capacitor configuration. The control circuit also carries out a second process of determining an RF source frequency, and, upon determining that the RF source frequency is outside, at a minimum, or at a maximum of a predetermined frequency range, determining a new MVC configuration to cause the RF source frequency, according to an RF source frequency tuning process, to be altered to be within or closer to the predetermined frequency range. The determination of the new MVC configuration is based on the RF source frequency and the predetermined frequency range.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: May 17, 2022
    Inventors: Imran Bhutta, Michael Ulrich
  • Patent number: 11264210
    Abstract: In one embodiment, the present disclosure may be directed to a method for impedance matching. A matching network is positioned between a radio frequency (RF) source and a plasma chamber. The RF source is configured to provide at least two non-zero pulse levels, and the matching network includes at least one electronically variable capacitor (EVC) configured to alter its capacitance to provide a match configuration. For each of the pulse levels, at a regular time interval, the method determines a first parameter value for a first parameter related to the plasma chamber or matching network. For each of the pulse levels, the method carries out a separate matching process based on the determined parameter values for the pulse level.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: March 1, 2022
    Inventors: Tomislav Lozic, Bala Kandampalayam, Imran Bhutta
  • Publication number: 20200343077
    Abstract: In one embodiment, the present disclosure may be directed to a method for impedance matching. A matching network is positioned between a radio frequency (RF) source and a plasma chamber. The RF source is configured to provide at least two non-zero pulse levels, and the matching network includes at least one electronically variable capacitor (EVC) configured to alter its capacitance to provide a match configuration. For each of the pulse levels, at a regular time interval, the method determines a first parameter value for a first parameter related to the plasma chamber or matching network. For each of the pulse levels, the method carries out a separate matching process based on the determined parameter values for the pulse level.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventors: Tomislav LOZIC, Bala KANDAMPALAYAM, Imran BHUTTA
  • Patent number: 10741364
    Abstract: In one embodiment, the present disclosure may be directed to a matching network coupled to an RF source and a plasma chamber and including an electronically variable capacitor (EVC) and a control circuit. The control circuit receives parameter signals and determines corresponding parameter values. For each parameter value, the control circuit determines whether the parameter value is relevant to the matching activity and whether the parameter value is relevant to a second activity of the matching network. The matching network carries out the matching activity based on the parameter values determined to be relevant to the matching activity, and carries out the second activity based on the parameter values determined to be relevant to the second activity.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: August 11, 2020
    Assignee: RENO TECHNOLOGIES, INC.
    Inventors: Tomislav Lozic, Imran Bhutta, Ronald Decker, Bala Kandampalayam
  • Publication number: 20200234927
    Abstract: In one embodiment, the present disclosure is directed to a method for impedance matching. The RF source provides at least two repeating, non-zero pulse levels, including a high-priority pulse level and a low-priority pulse level. The matching network comprises at least one EVC, which comprises discrete capacitors configured to switch in and out to provide a plurality of match configurations. Each EVC has a switching limit comprising a predetermined number of switches in or out of the EVC's discrete capacitors in a prior time interval. Upon determining that switching to a new match configuration would cause an EVC to reach the switching limit, the method determines whether the new match configuration is for the low- or high-priority pulse level. If for the low-priority pulse level, the method prevents the switching of the EVC. If for the high-priority pulse level, the method switches the EVC to the new match configuration.
    Type: Application
    Filed: April 8, 2020
    Publication date: July 23, 2020
    Inventors: Tomislav LOZIC, Bala KANDAMPALAYAM, Michael ULRICH, Imran BHUTTA, Ronald DECKER
  • Publication number: 20200234926
    Abstract: In one embodiment, the present disclosure may be directed to a matching network coupled to an RF source and a plasma chamber and including an electronically variable capacitor (EVC) and a control circuit. The control circuit receives parameter signals and determines corresponding parameter values. For each parameter value, the control circuit determines whether the parameter value is relevant to the matching activity and whether the parameter value is relevant to a second activity of the matching network. The matching network carries out the matching activity based on the parameter values determined to be relevant to the matching activity, and carries out the second activity based on the parameter values determined to be relevant to the second activity.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Inventors: Tomislav LOZIC, Imran BHUTTA, Ronald DECKER, Bala KANDAMPALAYAM
  • Patent number: 10720309
    Abstract: In one embodiment, the present disclosure is directed to a method for impedance matching. The RF source provides at least two repeating, non-zero pulse levels, including a high-priority pulse level and a low-priority pulse level. The matching network comprises at least one EVC, which comprises discrete capacitors configured to switch in and out to provide a plurality of match configurations. Each EVC has a switching limit comprising a predetermined number of switches in or out of the EVC's discrete capacitors in a prior time interval. Upon determining that switching to a new match configuration would cause an EVC to reach the switching limit, the method determines whether the new match configuration is for the low- or high-priority pulse level. If for the low-priority pulse level, the method prevents the switching of the EVC. If for the high-priority pulse level, the method switches the EVC to the new match configuration.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: July 21, 2020
    Assignee: RENO TECHNOLOGIES, INC.
    Inventors: Tomislav Lozic, Bala Kandampalayam, Michael Ulrich, Imran Bhutta, Ronald Decker
  • Patent number: 10714314
    Abstract: In one embodiment, the present disclosure is directed to a method for impedance matching including a) positioning a matching network between a radio frequency (RF) source and a plasma chamber; b) determining, from among the plurality of match configurations, a new match configuration to be used when there is an expected pulse level change from a first of the pulse levels to a second of the pulse levels; and c) sending a control signal to alter the at least one EVC to provide the new match configuration. The control signal is sent a predetermined time period before a time for the expected pulse level change, the predetermined time period being substantially similar to a time period for the EVC to switch between two match configurations of the plurality of match configurations.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 14, 2020
    Assignee: RENO TECHNOLOGIES, INC.
    Inventors: Imran Bhutta, Tomislav Lozic, Ronald Decker, Bala Kandampalayam
  • Publication number: 20200203130
    Abstract: In one embodiment, the present disclosure is directed to a method for impedance matching including a) positioning a matching network between a radio frequency (RF) source and a plasma chamber; b) determining, from among the plurality of match configurations, a new match configuration to be used when there is an expected pulse level change from a first of the pulse levels to a second of the pulse levels; and c) sending a control signal to alter the at least one EVC to provide the new match configuration. The control signal is sent a predetermined time period before a time for the expected pulse level change, the predetermined time period being substantially similar to a time period for the EVC to switch between two match configurations of the plurality of match configurations.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventors: Imran BHUTTA, Tomislav LOZIC, Ronald DECKER, Bala KANDAMPALAYAM
  • Publication number: 20200168439
    Abstract: In one embodiment, an impedance matching network includes a mechanically variable capacitor (MVC), a second variable capacitor, and a control circuit. The control circuit carries out a first process of determining a second variable capacitor configuration for reducing a reflected power at the RF source output, and altering the second variable capacitor to the second variable capacitor configuration. The control circuit also carries out a second process of determining an RF source frequency, and, upon determining that the RF source frequency is outside, at a minimum, or at a maximum of a predetermined frequency range, determining a new MVC configuration to cause the RF source frequency, according to an RF source frequency tuning process, to be altered to be within or closer to the predetermined frequency range. The determination of the new MVC configuration is based on the RF source frequency and the predetermined frequency range.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Imran BHUTTA, Michael ULRICH
  • Patent number: 9844127
    Abstract: A switching circuit includes: an electronic switch comprising one or more diodes for switching a capacitor within an electronic variable capacitor array; a first power switch receiving a common input signal and a first voltage input; and a second power switch receiving the common input signal and a second voltage input, wherein the second voltage input is opposite in polarity to the first voltage input, and the first power switch and the second power switch asynchronously connect the first voltage input and the second voltage input, respectively, to a common output in response to the common input signal, the one or more diodes being switched according to the first voltage input or the second voltage input connected to the common output.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: December 12, 2017
    Inventor: Imran Bhutta
  • Publication number: 20160064161
    Abstract: A switching circuit includes: an electronic switch comprising one or more diodes for switching a capacitor within an electronic variable capacitor array; a first power switch receiving a common input signal and a first voltage input; and a second power switch receiving the common input signal and a second voltage input, wherein the second voltage input is opposite in polarity to the first voltage input, and the first power switch and the second power switch asynchronously connect the first voltage input and the second voltage input, respectively, to a common output in response to the common input signal, the one or more diodes being switched according to the first voltage input or the second voltage input connected to the common output.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 3, 2016
    Inventor: Imran Bhutta
  • Publication number: 20160065207
    Abstract: In one embodiment, the invention can be a control circuit for an electronic switch, the control circuit including a first power switch comprising a first optocoupler, the first power switch configured to (a) receive a common input signal and a first voltage, and (b) switchably connect the first voltage to a common output in response to the common input signal; and a second power switch comprising a first transistor coupled to the common output, and a second transistor connected in series between the first transistor and a second voltage source providing a second voltage, the second power switch configured to (a) receive the common input signal and the second voltage, and (b) switchably connect the second voltage to the common output in response to the common input signal.
    Type: Application
    Filed: November 9, 2015
    Publication date: March 3, 2016
    Inventor: Imran Bhutta
  • Publication number: 20100123502
    Abstract: A system for providing at least two output signals to produce a substantially uniform potential profile includes a signal generator adapted to emit a frequency at least about 30 megahertz, a splitter in communication with the signal generator, and a signal manipulator in communication with the splitter. The splitter is adapted to split the signal of the signal generator into the two output signals, and the signal manipulator is adapted to manipulate a phase, a gain, or an impedance of the two output signals. The signal manipulator manipulates the two output signals so that the two output signals produce the substantially uniform potential profile.
    Type: Application
    Filed: July 9, 2009
    Publication date: May 20, 2010
    Inventors: Imran A. Bhutta, Scott D. Ivins
  • Publication number: 20060198077
    Abstract: A capacitor array may include a bottom electrode, a plurality of top electrodes, at least one dielectric medium and a plurality of switching mechanisms. Each switching mechanism may separably electronically connect two or more top electrodes. The at least one dielectric medium may include a plurality of discrete capacitors each in contact with a top electrode and the bottom electrode.
    Type: Application
    Filed: March 6, 2006
    Publication date: September 7, 2006
    Inventor: Imran Bhutta
  • Publication number: 20060170367
    Abstract: Methods and systems of detecting one or more characteristics of a load are disclosed. One or more characteristics of a first signal may be detected at the output of a Radio Frequency (RF) power generator. The first signal may have a fundamental frequency. The one or more characteristics of the first signal may be sampled at a sampling frequency to produce a digital sampled signal. The sampling frequency may be determined based on a function of the fundamental frequency of the first signal. One or more characteristics of a load in communication with the RF power generator may then be determined from the digital sampled signal.
    Type: Application
    Filed: January 11, 2006
    Publication date: August 3, 2006
    Inventor: Imran Bhutta
  • Patent number: 6791274
    Abstract: There is provided by this invention an improved rf power control device for plasma applications for optimization of the feedback control voltage in the presence of harmonic and non-harmonic spurious frequencies. In this system, an oscillator and mixer, similar to those normally used in radio receiver applications are placed at the sampled output of the solid state rf signal source used for plasma ignition. The sampled output is mixed to a low frequency and filtered to remove the spurious frequencies that is created in the non-linear plasma. In this way, the feedback power control essentially ignores the spurious frequencies. In this application, the oscillator and mixer do not interfere with other desirable system characteristics and effectively isolate the feedback control voltage from changes in plasma spurious content. This allows rf power to be delivered to the plasma with greater accuracy than would otherwise be possible with conventional power control device and methods.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: September 14, 2004
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Frederick Hauer, Imran A. Bhutta, Ronald A. Decker, Joseph Osselburn, Theresa Beizer, Anton Mavretic
  • Patent number: 6400012
    Abstract: An apparatus for removing heat from an electronic component. In one embodiment, a heat generating device is mounted to a top-side surface of a package substrate. A fluid flow channel that is defined at least partially by a portion of the back-side surface of the substrate is provided for passing a cooling medium. This configuration permits the cooling medium to be in direct contact with the back-side surface of the substrate, thus, reducing the overall thermal resistance between the heat generating device and cooling medium.
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: June 4, 2002
    Assignee: Advanced Energy Voorhees, Inc.
    Inventors: William J. Miller, Imran A. Bhutta
  • Publication number: 20020043716
    Abstract: An apparatus for removing heat from an electronic component. In one embodiment, a heat generating device is mounted to a top-side surface of a package substrate. A fluid flow channel that is defined at least partially by a portion of the back-side surface of the substrate is provided for passing a cooling medium. This configuration permits the cooling medium to be in direct contact with the back-side surface of the substrate, thus, reducing the overall thermal resistance between the heat generating device and cooling medium.
    Type: Application
    Filed: September 17, 1997
    Publication date: April 18, 2002
    Inventors: WILLIAM J. MILLER, IMRAN A. BHUTTA