Patents by Inventor Ioannis Spyropoulos

Ioannis Spyropoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170324467
    Abstract: Methods and systems for femtocell positioning using low Earth orbit (LEO) satellite signals may comprise receiving an initial position of a wireless communication device (WCD) as entered by as user, service provider, or manufacturer, wherein the WCD comprises a LEO satellite signal receiver path (Rx). The WCD may be operable to provide wireless communication services to other WCDs. LEO signals may be received for determining a position of the WCD, which may be compared to a threshold radius defined by the initial position. The communication services may be enabled when the measured position is within the threshold radius. The WCD may comprise a femtocell device, a WiFi access point, or may provide cellular telephone service to the other WCDs. The position of the WCD may be measured upon powering up of the WCD, on a periodic basis, and/or when one or more motion sensors in the WCD detect motion.
    Type: Application
    Filed: April 24, 2017
    Publication date: November 9, 2017
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Patent number: 9791574
    Abstract: Methods and systems for repurposing of a global navigation satellite system receiver for receiving low-earth orbit (LEO) communication satellite timing signals may comprise receiving a medium Earth orbit (MEO) satellite signal and/or a LEO signal in a receiver of the communication device. The MEO or LEO signal may be down-converted, and a position of the communication device may be calculated utilizing the down-converted signal. The signal may be down-converted utilizing a local oscillator signal generated by a phase locked loop (PLL), which may be delta-sigma modulated via a fractional-N divider. A clock signal may be communicated to the PLL utilizing a temperature-compensated crystal oscillator. The signal may be down-converted to an intermediate frequency or down-converted directly to baseband frequencies. The signal may be processed utilizing surface acoustic wave (SAW) filters. In-phase and quadrature signals may be processed in the RF path utilizing a two-stage polyphase filter.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: October 17, 2017
    Assignee: Maxlinear, Inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar, Anand Anandakumar
  • Patent number: 9739890
    Abstract: A GPS receiver includes an RF front end for acquiring and tracking a satellite signal and a baseband processor configured to preserve power. The baseband processor includes a GPS engine configured to process the satellite signal and generate a PVT fix, a power supervisory module for receiving the PVT fix, and a user state module that determines an environmental state, wherein the power supervisory module may power down the GPS receiver for a period of time based on a result of the determined environment state. The baseband processor also includes a time-based management module that adjusts the TCXO in response to the determined environmental state. The GPS receiver includes a plurality of operation modes, each of which is associated with a plurality of tracking profiles.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: August 22, 2017
    Assignee: MaxLinear, Inc.
    Inventors: Ioannis Spyropoulos, Anand Anandakumar, Maxime Leclercq, Yves Rasse
  • Patent number: 9733364
    Abstract: Methods and systems for a dual mode global navigation satellite system may comprise selectively enabling a medium Earth orbit (MEO) radio frequency (RF) path and a low Earth orbit (LEO) RF path in a wireless communication device to receive RF satellite signals. The signals may be processed to determine a position of the wireless device. The signals may be digitized and buffered before further processing. The RF paths may be time-division duplexed by the selective enabling of the MEO and LEO paths. Acquisition and tracking modules in the MEO RF path may be blanked when the LEO RF path is enabled. The MEO RF path may be powered down when the LEO RF path is enabled. The signals may be down-converted to an intermediate frequency before down-converting to baseband frequencies or may be down-converted directly to baseband frequencies. In-phase and quadrature signals may be processed.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: August 15, 2017
    Assignee: Maxlinear, Inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Publication number: 20170115402
    Abstract: Methods and systems for power optimization of a global navigation satellite system may comprise receiving LEO RF satellite signals utilizing a LEO satellite signal receiver path (LEO Rx) in a wireless communication device (WCD). Circuitry in the LEO Rx may be configured in a powered down state based on a sleep schedule. A location of the wireless communication device may be determined utilizing LEO signals received by the LEO Rx. The sleep schedule may be based on a desired accuracy of the determined location, the relative strengths of signals received from a plurality of LEO satellites, a relevance factor generated by a position engine and communicated to the sort module, or a desired power level of the WCD. The relative strengths of received signals may be compared utilizing a sort module in a LEO demodulator in the LEO satellite signal receiver path.
    Type: Application
    Filed: November 8, 2016
    Publication date: April 27, 2017
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar, Saju Palayur
  • Patent number: 9634755
    Abstract: Methods and systems for femtocell positioning using low Earth orbit (LEO) satellite signals may comprise receiving LEO RF satellite signals utilizing a LEO satellite signal receiver path when medium Earth orbit (MEO) signals are attenuated below a threshold needed for positioning purposes. A position of said wireless communication device (WCD) may be measured based on the received LEO RF satellite signals. The measured position of the WCD may be compared to a threshold radius defined by a stored initial position. Wireless communication services to the other WCDs may be enabled when the measured position is within the threshold radius. Reentry of the stored initial position may be requested when the measured position is outside of the threshold radius. The WCD may be disabled when the measured position of the WCD falls outside of the threshold radius more than a predetermined number of times.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: April 25, 2017
    Assignee: Maxlinear, Inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Publication number: 20170111190
    Abstract: An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
    Type: Application
    Filed: December 28, 2016
    Publication date: April 20, 2017
    Inventors: Ioannis Spyropoulos, Anand Anandakumar
  • Publication number: 20170093497
    Abstract: Aspects of a method and system for feedback during optical communications are provided. In one embodiment, a system for optical communications comprises a predistortion module, a feedback subsystem, a transmit optical subsystem, and an external modulator. The predistortion module is operable to receive an input digital signal and modify the input digital signal to produce a digital predistorted signal. The transmit optical subsystem is operable to generate an optical signal from the digital predistorted signal. The modification of the input digital signal is dynamically controlled by the feedback subsystem according to one or more characteristics of the optical signal as determined by the feedback subsystem. The amplitude of the external modulator output is also dynamically controlled by the feedback subsystem.
    Type: Application
    Filed: June 17, 2016
    Publication date: March 30, 2017
    Inventors: Curtis Ling, Anand Anandakumar, Ioannis Spyropoulos
  • Patent number: 9565038
    Abstract: An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: February 7, 2017
    Assignee: MAXLINEAR, INC.
    Inventors: Ioannis Spyropoulos, Anand Anandakumar
  • Publication number: 20160370473
    Abstract: Methods and systems for a dual mode global navigation satellite system may comprise selectively enabling a medium Earth orbit (MEO) radio frequency (RF) path and a low Earth orbit (LEO) RF path in a wireless communication device to receive RF satellite signals. The signals may be processed to determine a position of the wireless device. The signals may be digitized and buffered before further processing. The RF paths may be time-division duplexed by the selective enabling of the MEO and LEO paths. Acquisition and tracking modules in the MEO RF path may be blanked when the LEO RF path is enabled. The MEO RF path may be powered down when the LEO RF path is enabled. The signals may be down-converted to an intermediate frequency before down-converting to baseband frequencies or may be down-converted directly to baseband frequencies. In-phase and quadrature signals may be processed.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Publication number: 20160352427
    Abstract: Aspects of a method and system for feedback during optical communications are provided. In one embodiment, a system for optical communications comprises a digital-to-analog converter (DAC), a driver, and a transmit optical subsystem. The DAC is operable to receive a digital code of a plurality of digital codes and output an analog current signal having an analog current level of a plurality of analog current levels. The driver is operable to condition the analog current signal output from the digital-to-analog converter. The transmit optical subsystem is operable to generate an optical signal from the conditioned analog current signal. A digital modification of an input digital signal is dynamically controlled by a feedback path according to one or more characteristics of the optical signal. The one or more characteristics comprise a nonlinearity that may be temperature dependent.
    Type: Application
    Filed: May 25, 2016
    Publication date: December 1, 2016
    Inventors: Anand Anandakumar, Ioannis Spyropoulos, Curtis Ling
  • Patent number: 9429658
    Abstract: Methods and systems for a dual mode global navigation satellite system may comprise selectively enabling a medium Earth orbit (MEO) radio frequency (RF) path and a low Earth orbit (LEO) RF path in a wireless communication device to receive RF satellite signals. The signals may be down-converted to determine a position of the wireless device. The signals may be down-converted utilizing local oscillator signals from a phase locked loop (PLL). The RF paths may be time-division duplexed by the selective enabling of the MEO and LEO paths. Acquisition and tracking modules in the MEO RF path may be blanked when the LEO RF path is enabled. The MEO RF path may be powered down when the LEO RF path is enabled. The signals may be down-converted to an intermediate frequency before down-converting to baseband frequencies or may be down-converted directly to baseband frequencies. In-phase and quadrature signals may be processed.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: August 30, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Publication number: 20160241423
    Abstract: An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
    Type: Application
    Filed: January 26, 2016
    Publication date: August 18, 2016
    Inventors: Ioannis Spyropoulos, Anand Anandakumar
  • Patent number: 9395445
    Abstract: A GNSS system operates intermittently and has adaptive activity and sleep time in order to reduce power consumption. The GNSS system provides an enhanced estimate of its position in the absence of GNSS signals of sufficient strength. The user's activity and behavior is modeled and used to improve performance, response time, and power consumption of the GNSS system. The user model is based, in part, on the received GNSS signals, a history of the user's positions, velocity, time, and inputs from other sensors disposed in the GNSS system, as well as data related to the network. During each activity time, the GNSS receiver performs either tracking, or acquisition followed by tracking The GNSS receiver supports both normal acquisition as well as low-power acquisition.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: July 19, 2016
    Assignee: MaxLinear, Inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Anand K. Anandakumar, Curtis Ling
  • Publication number: 20160066160
    Abstract: Methods and systems for global navigation satellite system configuration of wireless communication applications may comprise determining a location of a wireless communication device (WCD) comprising a satellite positioning RF path utilizing signals received by the RF path, establishing communications with a wireless access point based on the determined location, and configuring a wireless communication function of the wireless communication device based on the determined location, which may comprise a power level of WiFi circuitry in the WCD. The determined location and a transaction ID for a transaction may be stored utilizing a security processor. The RF path may be powered down based on the determined location. The wireless function may comprise a synchronization of data on the WCD with devices in a home location. The WCD may comprise a femtocell device or a set-top box, and may be controlled by a reduced instruction set computing (RISC) central processing unit (CPU).
    Type: Application
    Filed: November 12, 2015
    Publication date: March 3, 2016
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Publication number: 20160056882
    Abstract: Methods and systems for femtocell positioning using low Earth orbit (LEO) satellite signals may comprise receiving LEO RF satellite signals utilizing a LEO satellite signal receiver path when medium Earth orbit (MEO) signals are attenuated below a threshold needed for positioning purposes. A position of said wireless communication device (WCD) may be measured based on the received LEO RF satellite signals. The measured position of the WCD may be compared to a threshold radius defined by a stored initial position. Wireless communication services to the other WCDs may be enabled when the measured position is within the threshold radius. Reentry of the stored initial position may be requested when the measured position is outside of the threshold radius. The WCD may be disabled when the measured position of the WCD falls outside of the threshold radius more than a predetermined number of times.
    Type: Application
    Filed: October 30, 2015
    Publication date: February 25, 2016
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Publication number: 20160025861
    Abstract: A system for indoor global navigation satellite system detection utilizing low Earth orbit satellite signals is disclosed and may include in a mobile communication device comprising a low Earth orbit (LEO) satellite signal receiver path and a medium Earth orbit (MEO) satellite signal receiver path: receiving a LEO RF satellite signal utilizing said LEO satellite signal receiver path, measuring a received signal strength indicator (RSSI) for the received LEO signal, calculating an expected received MEO signal strength based on the measured RSSI, and configuring the wireless receiver to determine its position using LEO signals or MEO signals based on the calculated MEO signal strength and measured RSSI. The MEO path may be powered down when the calculated expected signal strength is below a threshold level for positioning purposes. The MEO path may be powered up when the calculated expected signal strength increases above a threshold level for positioning purposes.
    Type: Application
    Filed: September 30, 2015
    Publication date: January 28, 2016
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Patent number: 9246718
    Abstract: An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: January 26, 2016
    Assignee: Maxlinear, Inc.
    Inventors: Ioannis Spyropoulos, Anand Anandakumar
  • Patent number: 9191778
    Abstract: Methods and systems for global positioning navigate satellite system configuration of wireless communication applications may comprise in a wireless communication device (WCD) comprising a satellite positioning RF path, determining a location of the WCD utilizing LEO signals received by said satellite positioning RF path, establishing communications with a wireless access point based on the determined location, and configuring a wireless communication function of the WCD based on the determined location. The wireless communication function may comprise a power level of wireless local area network circuitry in the WCD, a point-of-sale transaction, or a synchronization of data on the WCD with one or more devices in a home location of the WCD. The determined location and a transaction ID for the point-of-sale transaction may be stored utilizing a security processor in the WCD. The satellite positioning RF path may be powered down based on the determined location.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: November 17, 2015
    Assignee: Maxlinear, Inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar
  • Patent number: 9179437
    Abstract: Methods and systems for femtocell positioning using low Earth orbit (LEO) satellite signals may comprise receiving LEO RF satellite signals utilizing a LEO satellite signal receiver path when medium Earth orbit (MEO) signals are attenuated below a threshold needed for positioning purposes by the MEO receiver path. A position of said wireless communication device (WCD) may be measured based on the received LEO RF satellite signals. The measured position of the WCD may be compared to a threshold radius defined by a stored initial position. Wireless communication services to the other WCDs may be enabled when the measured position is within the threshold radius. Reentry of the stored initial position may be requested when the measured position is outside of the threshold radius. The WCD may be disabled when the measured position of the WCD falls outside of the threshold radius more than a predetermined number of times.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: November 3, 2015
    Assignee: MaxLinear, Inc.
    Inventors: Maxime Leclercq, Ioannis Spyropoulos, Nishant Kumar