Patents by Inventor Ira H. Pastan

Ira H. Pastan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190085078
    Abstract: The invention provides a chimeric antigen receptor (CAR) comprising an antigen binding domain comprising SEQ ID NOs: 1-6, a transmembrane domain, and an intracellular T cell signaling domain. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal are also disclosed.
    Type: Application
    Filed: August 21, 2018
    Publication date: March 21, 2019
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Rimas J. Orentas, Ira H. Pastan, Dimiter S. Dimitrov, Crystal L. Mackall
  • Publication number: 20180362659
    Abstract: We have constructed a polynucleotide encoding a bispecific antibody engaging molecule which has one arm that specifically engages a tumor cell which expresses the human EGFRvIII mutant protein on its surface, and a second arm that specifically engages T cell activation ligand CD3. The polynucleotide is codon optimized for expression in CHO cells. The subunits of the engaging molecules are organized to achieve greater efficiency. These are promising therapeutic agents.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 20, 2018
    Inventors: Darell D. Bigner, John Sampson, Chien-Tsun Kuan, Mingqing Cai, Bryan D. Choi, Patrick C. Gedeon, Ira H. Pastan
  • Publication number: 20180318435
    Abstract: Polypeptides and proteins that specifically bind to and immunologically recognize B-Cell Maturation Antigen (BCMA) are disclosed. Chimeric antigen receptors (CARs), anti-BCMA binding moieties, nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, and conjugates relating to the polypeptides and proteins are also disclosed. Methods of detecting the presence of cancer and methods of treating or preventing cancer are also disclosed.
    Type: Application
    Filed: November 10, 2016
    Publication date: November 8, 2018
    Applicants: The United States of America,as represented by the Secretary,Department of Health and Human Service, Sanford Research
    Inventors: Ira H. Pastan, Tapan Bera, Satoshi Nagata, Tomoko Ise, Yasuhiro Abe
  • Publication number: 20180311346
    Abstract: Regional, tumor-targeted, cytotoxic therapy, such as D2C7-immunotoxin (D2C7-IT), not only specifically target and destroy tumor cells, but in the process initiate immune events that promote an in situ vaccine effect. The antitumor effects are amplified by immune checkpoint blockade which engenders a long-term systemic immune response that effectively eliminates all tumor cells.
    Type: Application
    Filed: November 4, 2016
    Publication date: November 1, 2018
    Applicants: Duke University, THE GOVERNMENT OF THE UNITED STATES AS REPRESENTED BY THE SECRETARY OF HEALTH AND HUMAN, SERVICES, NATIONAL INSTITUTES OF HEALTH
    Inventors: Darell Bigner, Vidyalakshmi Chandramohan, Smita Nair, Matthias Gromeier, Xuhui Bao, Ira H. Pastan
  • Patent number: 10111927
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more of amino acid residues E420, D463, Y481, L516, R563, D581, D589, and K606, wherein the amino acid residues are defined by reference to SEQ ID NO: 1. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 30, 2018
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Ira H. Pastan, Masanori Onda, Wenhai Liu
  • Patent number: 10072084
    Abstract: We tested the in vitro and in vivo efficacy of a recombinant bispecific immunotoxin that recognizes both EGFRwt and tumor-specific EGFRvIII receptors. A single chain antibody was cloned from a hybridoma and fused to toxin, carrying a C-terminal peptide which increases retention within cells. The binding affinity and specificity of the recombinant bispecific immunotoxin for the EGFRwt and the EGFRvIII proteins was measured. In vitro cytotoxicity was measured. In vivo activity of the recombinant bispecific immunotoxin was evaluated in subcutaneous models and compared to that of an established monospecific immunotoxin. In our preclinical studies, the bispecific recombinant immunotoxin, exhibited significant potential for treating brain tumors.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: September 11, 2018
    Assignees: Duke University, The United States of America as Represented by the Secretary Department of Health and Human Services (NIH)
    Inventors: Darell D. Bigner, Chien-Tsun Kuan, Ira H. Pastan, Charles Pegram
  • Patent number: 10072078
    Abstract: The invention provides a chimeric antigen receptor (CAR) comprising an antigen binding domain comprising SEQ ID NOs: 1-6, a transmembrane domain, and an intracellular T cell signaling domain. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal are also disclosed.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: September 11, 2018
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Rimas J. Orentas, Ira H. Pastan, Dimiter S. Dimitrov, Crystal L. Mackall
  • Patent number: 10052382
    Abstract: High affinity antibodies were made to gangliosides expressed on tumor cells. The antibodies can be used analytically, diagnostically, therapeutically, and theranostically. The antibodies may be used to target cytotoxic reagents to tumor cells, thus minimizing full-body toxicity. The antibodies may also be used with out added cytotoxin. The antibodies may be detectably labeled or labelable for analytic and diagnostic purposes. The combination of specificity and affinity of the antibodies render them particularly useful.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: August 21, 2018
    Assignees: Duke University, The United States of America as Represented by the Secretary of Health (NIH)
    Inventors: Darell Bigner, Chien-Tsun Kuan, Ira H. Pastan, Hailan Piao
  • Patent number: 10053514
    Abstract: We have constructed a polynucleotide encoding a bispecific antibody engaging molecule which has one arm that specifically engages a tumor cell which expresses the human EGFRvIII mutant protein on its surface, and a second arm that specifically engages T cell activation ligand CD3. The polynucleotide is codon optimized for expression in CHO cells. The subunits of the engaging molecules are organized to achieve greater efficiency. These are therapeutic agents.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: August 21, 2018
    Assignees: Duke University, The United States of America as Represented by the Secretary of Health and Human Services, National Institutes of Health
    Inventors: Darell D. Bigner, John Sampson, Chien-Tsun Kuan, Mingqing Cai, Bryan D. Choi, Patrick C. Gedeon, Ira H. Pastan
  • Patent number: 9868774
    Abstract: The disclosure provides a chimeric antigen receptor (CAR) comprising a) an antigen binding domain of HA22, a transmembrane domain, and an intracellular T cell signaling domain; or b) an antigen binding domain of BL22, a transmembrane domain, and an intracellular T cell signaling domain comprising CD28 and/or CD137. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of cancer in a mammal and methods of treating or preventing cancer in a mammal are also disclosed.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: January 16, 2018
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Rimas J. Orentas, Crystal L. Mackall, Ira H. Pastan
  • Publication number: 20170369535
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more B-cell and/or T-cell epitopes. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Application
    Filed: September 1, 2017
    Publication date: December 28, 2017
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human
    Inventors: Ira H. Pastan, Ronit Mazor, Masanori Onda, Aaron Vassall, Richard Beers, Jaime Eberle, Wenhai Liu
  • Patent number: 9803022
    Abstract: Described herein is the use of rabbit hybridoma technology, along with a panel of truncated mesothelin domain fragments, to identify anti-mesothelin mAbs that bind specific regions of mesothelin. In one aspect of the present disclosure, the rabbit mAbs bind an epitope that is not part of Region I. In particular, the identified mAbs (YP187, YP223, YP218 and YP3) bind either Region II (391-486), Region III (487-581) or a native conformation of mesothelin with subnanomolar affinity. These antibodies do not compete for binding with the mesothelin-specific immunotoxin SS1P or mesothelin-specific antibody MORAb-009. In another aspect, disclosed is a high-affinity rabbit mAb that binds Region I of mesothelin (YP158). YP158 binds native mesothelin protein in cancer cells and tissues with high affinity and specificity.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 31, 2017
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Ira H. Pastan, Yen T. Phung, Yifan Zhang, Wei Gao, Raffit Hassan
  • Patent number: 9765123
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more B-cell and/or T-cell epitopes. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 19, 2017
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Ira H. Pastan, Ronit Mazor, Masanori Onda, Aaron Vassall, Richard Beers, Jaime Eberle, Wenhai Liu
  • Publication number: 20170216398
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more of amino acid residues E420, D463, Y481, L516, R563, D581, D589, and K606, wherein the amino acid residues are defined by reference to SEQ ID NO: 1. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and phaxinaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Serv
    Inventors: Ira H. Pastan, Masanori Onda, Wenhai Liu
  • Patent number: 9676858
    Abstract: We have constructed bispecific antibody engaging molecules which have one arm that specifically engages a tumor cell which expresses the human EGFRvIII mutant protein on its surface, and a second arm that specifically engages T cell activation ligand CD3. The engaging molecules are highly cytotoxic and antigen-specific. These may be used as therapeutic agents.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: June 13, 2017
    Assignees: Duke University, The United States of America as represented by the secretary, Department of Health and Human Services (NIH)
    Inventors: Darell Bigner, Chien-Tsun Kuan, John Sampson, Bryan Choi, Ira H. Pastan, Patrick C. Gedeon
  • Publication number: 20170145097
    Abstract: Disclosed herein are isolated human monoclonal antibodies that specifically bind human CD22 with a dissociation constant (Kd) of 25 nM or less. Nucleic acids encoding these antibodies, expression vectors including these nucleic acid molecules, and isolated host cells that express the nucleic acid molecules are also disclosed. The antibodies can be used to detect human CD22 in a sample. In some cases, CD22 is soluble CD22. Methods of diagnosing a B-cell malignancy, or confirming a B-cell malignancy diagnosis, are disclosed herein that utilize these antibodies. Methods of treating a subject with a B-cell malignancy are also disclosed.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Applicant: The Government of the U.S.A. as represented by the Secretary of the Dept. of Health & Human Services
    Inventors: Dimiter S. Dimitrov, Xiaodong Xiao, Ira H. Pastan
  • Patent number: 9657066
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more of amino acid residues E420, D463, Y481, L516, R563, D581, D589, and K606, wherein the amino acid residues are defined by reference to SEQ ID NO: 1. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: May 23, 2017
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Ira H. Pastan, Masanori Onda, Wenhai Liu
  • Patent number: 9598492
    Abstract: Disclosed herein are isolated human monoclonal antibodies that specifically bind human CD22 with a dissociation constant (Kd) of 25 nM or less. Nucleic acids encoding these antibodies, expression vectors including these nucleic acid molecules, and isolated host cells that express the nucleic acid molecules are also disclosed. The antibodies can be used to detect human CD22 in a sample. In some cases, CD22 is soluble CD22. Methods of diagnosing a B-cell malignancy, or confirming a B-cell malignancy diagnosis, are disclosed herein that utilize these antibodies. Methods of treating a subject with a B-cell malignancy are also disclosed.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: March 21, 2017
    Assignee: The United States of America as represented by the Secretary of the Department of Health and Human Services
    Inventors: Dimiter S. Dimitrov, Xiaodong Xiao, Ira H. Pastan
  • Publication number: 20170051072
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more B-cell and/or T-cell epitopes. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Application
    Filed: June 23, 2016
    Publication date: February 23, 2017
    Inventors: Ira H. Pastan, Ronit Mazor, Masanori Onda, Byungkook Lee, Gerhard Niederfellner, Sabine Imhof-Jung, Ulrich Brinkmann, Werner Scheuer, Guy Georges
  • Publication number: 20170051064
    Abstract: We tested the in vitro and in vivo efficacy of a recombinant bispecific immunotoxin that recognizes both EGFRwt and tumor-specific EGFRvIII receptors. A single chain antibody was cloned from a hybridoma and fused to toxin, carrying a C-terminal peptide which increases retention within cells. The binding affinity and specificity of the recombinant bispecific immunotoxin for the EGFRwt and the EGFRvIII proteins was measured. In vitro cytotoxicity was measured. In vivo activity of the recombinant bispecific immunotoxin was evaluated in subcutaneous models and compared to that of an established monospecific immunotoxin. In our preclinical studies, the bispecific recombinant immunotoxin, exhibited significant potential for treating brain tumors.
    Type: Application
    Filed: October 11, 2016
    Publication date: February 23, 2017
    Applicants: Duke University, THE GOVERNMENT OF THE UNITED STATES AS REPRESENTED BY THE SECRETARY OF HEALTH AND HUMAN SERVICES , N
    Inventors: Darell D. Bigner, Chien-Tsun Kuan, Ira H. Pastan, Charles Pegram