Patents by Inventor Isaiah O. Oladeji

Isaiah O. Oladeji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240044008
    Abstract: A method for depositing divalent metal compounds on the surface of a nuclear power plant component, the component being a nickel-based or austenitic stainless steel alloy includes: providing within the component an aqueous treatment solution containing at least one soluble metal-containing compound such as a zinc salt and at least one source of oxygen; allowing the treatment solution to remain in the component until the compound is deposited on the wetted surface of the component; and, removing the aqueous solution after exposure. The treatment may be applied more than once, using more than one divalent metal compound, and the surface may further be exposed to a solution containing a noble metal species and a reducing agent. The treatment temperature is preferably below 100° C.
    Type: Application
    Filed: May 24, 2023
    Publication date: February 8, 2024
    Inventors: Robert D. Varrin, JR., Isaiah O. Oladeji
  • Patent number: 11894547
    Abstract: An engineered particle for an energy storage device, the engineered particle includes an active material particle, capable of storing alkali ions, comprising an outer surface, a conductive coating disposed on the outer surface of the active material particle, the conductive coating comprising a MxAlySizOw film; and at least one carbon particle disposed within the conductive coating. For the MxAlySizOw film, M is an alkali selected from the group consisting of Na and Li, and 1?x?4, 0?y?1, 1?z?2, and 3?w?6.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: February 6, 2024
    Assignees: ULVAC TECHNOLOGIES, INC., SISOM THIN FILMS LLC
    Inventors: Isaiah O. Oladeji, Akiyoshi Suzuki, Koukou Suu
  • Publication number: 20230216038
    Abstract: An engineered particle for an energy storage device, the engineered particle includes an active material particle, capable of storing alkali ions, comprising an outer surface, a conductive coating disposed on the outer surface of the active material particle, the conductive coating comprising a MxAlySizOw film; and at least one carbon particle disposed within the conductive coating. For the MxAlySizOw film, M is an alkali selected from the group consisting of Na and Li, and 1?x?4, 0?y?1, 1?z?2, and 3?w?6.
    Type: Application
    Filed: March 2, 2023
    Publication date: July 6, 2023
    Applicants: ULVAC Technologies, Inc., Sisom Thin Films LLC
    Inventors: Isaiah O. OLADEJI, Akiyoshi SUZUKI, Koukou SUU
  • Publication number: 20210104738
    Abstract: An engineered particle for an energy storage device, the engineered particle includes an active material particle, capable of storing alkali ions, comprising an outer surface, a conductive coating disposed on the outer surface of the active material particle, the conductive coating comprising a MxAlySizOw film; and at least one carbon particle disposed within the conductive coating. For the MxAlySizOw film, M is an alkali selected from the group consisting of Na and Li, and 1?x?4, 0?y?1, 1?z?2, and 3?w?6.
    Type: Application
    Filed: October 8, 2020
    Publication date: April 8, 2021
    Applicants: ULVAC Technologies, Inc., Sisom Thin Films LLC
    Inventors: Isaiah O. OLADEJI, Akiyoshi SUZUKI, Koukou SUU
  • Patent number: 9666870
    Abstract: A method for making a composite electrode for a lithium ion battery comprises the steps of: preparing a slurry containing particles of inorganic electrode material(s) suspended in a solvent; preheating a porous metallic substrate; loading the metallic substrate with the slurry; baking the loaded substrate at a first temperature; curing the baked substrate at a second temperature sufficient to form a desired nanocrystalline material within the pores of the substrate; calendaring the cured composite to reduce internal porosity; and, annealing the calendared composite at a third temperature to produce a self-supporting multiphase electrode. Because of the calendaring step, the resulting electrode is self-supporting, has improved current collecting properties, and improved cycling lifetime. Anodes and cathodes made by the process, and batteries using them, are also disclosed.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 30, 2017
    Assignee: QuantumScape Corporation
    Inventor: Isaiah O. Oladeji
  • Patent number: 9017777
    Abstract: A method for manufacturing thin films for a battery device. The method includes vaporizing a precursor material from a liquid source to form droplets ranging from, for example, about 10 microns to about 20 microns. Thereafter, the method includes subjecting the droplets from about 10 to about 20 microns to a megasonic energy source to cause formation of a plurality of smaller droplets ranging from, for example, about 0.25 micron to about 5 microns which are then directed to a heated substrate, where through a heterogeneous reaction a film of material overlying the surface region is formed. The method includes irradiating (e.g., ultra-violet, infra-red, or plasma) the film of material using electromagnetic radiation to process the film to cause a recrystallization of the film to form larger sized crystalline materials. Optionally, the method includes sequentially performing the vaporizing, reacting/releasing, and irradiating to build up a thickness of the film of material.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: April 28, 2015
    Assignee: QuantumScape Corporation
    Inventor: Isaiah O. Oladeji
  • Publication number: 20150110971
    Abstract: A method for making a composite electrode for a lithium ion battery comprises the steps of: preparing a slurry containing particles of inorganic electrode material(s) suspended in a solvent; preheating a porous metallic substrate; loading the metallic substrate with the slurry; baking the loaded substrate at a first temperature; curing the baked substrate at a second temperature sufficient to form a desired nanocrystalline material within the pores of the substrate; calendaring the cured composite to reduce internal porosity; and, annealing the calendared composite at a third temperature to produce a self-supporting multiphase electrode. Because of the calendaring step, the resulting electrode is self-supporting, has improved current collecting properties, and improved cycling lifetime. Anodes and cathodes made by the process, and batteries using them, are also disclosed.
    Type: Application
    Filed: August 19, 2014
    Publication date: April 23, 2015
    Inventor: Isaiah O. Oladeji
  • Publication number: 20150004326
    Abstract: A method for making ion conducting films includes the use of primary inorganic chemicals, which are preferably water soluble; formulating the solution with appropriate solvent, preferably deionized water; and spray depositing the solid electrolyte matrix on a heated substrate, preferably at 100 to 400° C. using a spray deposition system. In the case of lithium, the deposition step is then followed by lithiation or addition of lithium, then thermal processing, at temperatures preferably ranging between 100 and 500° C., to obtain a high lithium ion conducting inorganic solid state electrolyte. The method may be used for other ionic conductors to make electrolytes for various applications. The electrolyte may be incorporated into a lithium ion battery.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: Isaiah O. Oladeji
  • Publication number: 20140242293
    Abstract: A method for manufacturing thin films for a battery device. The method includes vaporizing a precursor material from a liquid source to form droplets ranging from, for example, about 10 microns to about 20 microns. Thereafter, the method includes subjecting the droplets from about 10 to about 20 microns to a megasonic energy source to cause formation of a plurality of smaller droplets ranging from, for example, about 0.25 micron to about 5 microns which are then directed to a heated substrate, where through a heterogeneous reaction a film of material overlying the surface region is formed. The method includes irradiating (e.g., ultra-violet, infra-red, or plasma) the film of material using electromagnetic radiation to process the film to cause a recrystallization of the film to form larger sized crystalline materials. Optionally, the method includes sequentially performing the vaporizing, reacting/releasing, and irradiating to build up a thickness of the film of material.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: QuantumScape Corporation
    Inventor: Isaiah O. Oladeji
  • Patent number: 8808405
    Abstract: A method for making a solid state cathode comprises the following steps: forming an alkali-free first solution comprising at least one transition metal and at least two ligands; spraying this solution onto a substrate that is heated to about 100 to 400° C. to form a first solid film containing the transition metal(s) on the substrate; forming a second solution comprising at least one alkali metal, at least one transition metal, and at least two ligands; spraying the second solution onto the first solid film on the substrate that is heated to about 100 to 400° C. to form a second solid film containing the alkali metal and at least one transition metal; and, heating to about 300 to 1000° C. in a selected atmosphere to react the first and second films to form a homogeneous cathode film. The cathode may be incorporated into a lithium or sodium ion battery.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: August 19, 2014
    Assignee: Quantumscape Corp.
    Inventor: Isaiah O. Oladeji
  • Publication number: 20140170480
    Abstract: A method for making a composite electrode for a lithium ion battery comprises the steps of: preparing a slurry containing particles of inorganic electrode material(s) suspended in a solvent; preheating a porous metallic substrate; loading the metallic substrate with the slurry; baking the loaded substrate at a first temperature; curing the baked substrate at a second temperature sufficient to form a desired nanocrystalline material within the pores of the substrate; calendaring the cured composite to reduce internal porosity; and, annealing the calendared composite at a third temperature to produce a self-supporting multiphase electrode. Because of the calendaring step, the resulting electrode is self-supporting, has improved current collecting properties, and improved cycling lifetime. Anodes and cathodes made by the process, and batteries using them, are also disclosed.
    Type: Application
    Filed: November 26, 2013
    Publication date: June 19, 2014
    Inventor: Isaiah O. Oladeji
  • Publication number: 20130283602
    Abstract: A method for making a solid state cathode comprises the following steps: forming an alkali-free first solution comprising at least one transition metal and at least two ligands; spraying this solution onto a substrate that is heated to about 100 to 400° C. to form a first solid film containing the transition metal(s) on the substrate; forming a second solution comprising at least one alkali metal, at least one transition metal, and at least two ligands; spraying the second solution onto the first solid film on the substrate that is heated to about 100 to 400° C. to form a second solid film containing the alkali metal and at least one transition metal; and, heating to about 300 to 1000° C. in a selected atmosphere to react the first and second films to form a homogeneous cathode film. The cathode may be incorporated into a lithium or sodium ion battery.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 31, 2013
    Inventor: Isaiah O. Oladeji
  • Patent number: 8465556
    Abstract: A method for making a solid state cathode comprises the following steps: forming an alkali free first solution comprising at least one transition metal and at least two ligands; spraying this solution onto a substrate that is heated to about 100 to 400° C. to form a first solid film containing the transition metal(s) on the substrate; forming a second solution comprising at least one alkali metal, at least one transition metal, and at least two ligands; spraying the second solution onto the first solid film on the substrate that is heated to about 100 to 400° C. to form a second solid film containing the alkali metal and at least one transition metal; and, heating to about 300 to 1000° C. in a selected atmosphere to react the first and second films to form a homogeneous cathode film. The cathode may be incorporated into a lithium or sodium ion battery.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: June 18, 2013
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Publication number: 20130108802
    Abstract: A method for making a composite electrode for a lithium ion battery comprises the steps of: preparing a slurry containing particles of inorganic electrode material(s) suspended in a solvent; preheating a porous metallic substrate; loading the metallic substrate with the slurry; baking the loaded substrate at a first temperature; curing the baked substrate at a second temperature sufficient to form a desired nanocrystalline material within the pores of the substrate; calendaring the cured composite to reduce internal porosity; and, annealing the calendared composite at a third temperature to produce a self-supporting multiphase electrode. Because of the calendaring step, the resulting electrode is self-supporting, has improved current collecting properties, and improved cycling lifetime. Anodes and cathodes made by the process, and batteries using them, are also disclosed.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Inventor: Isaiah O. Oladeji
  • Patent number: 8414971
    Abstract: A method for depositing a solid film of ZnO onto a substrate from a reagent solution includes a reservoir of reagent solution maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solution. The reagent solution contains a source of Zn, a source of O, and multiple ligands to further control solution stability and shelf life. The chilled solution is dispensed through a showerhead onto a substrate. The substrate is positioned in a holder that has a raised structure peripheral to the substrate to retain or impound a controlled volume (or depth) of reagent solution over the exposed surface of the substrate. The reagent solution is periodically or continuously replenished from the showerhead so that only the part of the solution directly adjacent to the substrate is heated. A heater is disposed beneath the substrate and maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solution may be initiated.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: April 9, 2013
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 8372163
    Abstract: A method for making ion conducting films includes the use of primary inorganic chemicals, which are preferably water soluble; formulating the solution with appropriate solvent, preferably deionized water; and spray depositing the solid electrolyte matrix on a heated substrate, preferably at 100 to 400° C. using a spray deposition system. In the case of lithium, the deposition step is then followed by lithiation or addition of lithium, then thermal processing, at temperatures preferably ranging between 100 and 500° C., to obtain a high lithium ion conducting inorganic solid state electrolyte. The method may be used for other ionic conductors to make electrolytes for various applications. The electrolyte may be incorporated into a lithium ion battery.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: February 12, 2013
    Assignee: Sisom Thin Films, LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 8349498
    Abstract: A method for making ion conducting films includes the use of primary inorganic chemicals, which are preferably water soluble; formulating the solution with appropriate solvent, preferably deionized water; and spray depositing the solid electrolyte matrix on a heated substrate, preferably at 100 to 400° C. using a spray deposition system. In the case of lithium, the deposition step is then followed by lithiation or addition of lithium, then thermal processing, at temperatures preferably ranging between 100 and 500° C., to obtain a high lithium ion conducting inorganic solid state electrolyte. The method may be used for other ionic conductors to make electrolytes for various applications. The electrolyte may be incorporated into a lithium ion battery.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: January 8, 2013
    Assignee: Sisom Thin Films, LLC
    Inventor: Isaiah O. Oladeji
  • Publication number: 20120317797
    Abstract: A method for making ion conducting films includes the use of primary inorganic chemicals, which are preferably water soluble; formulating the solution with appropriate solvent, preferably deionized water; and spray depositing the solid electrolyte matrix on a heated substrate, preferably at 100 to 400° C. using a spray deposition system. In the case of lithium, the deposition step is then followed by lithiation or addition of lithium, then thermal processing, at temperatures preferably ranging between 100 and 500° C., to obtain a high lithium ion conducting inorganic solid state electrolyte. The method may be used for other ionic conductors to make electrolytes for various applications. The electrolyte may be incorporated into a lithium ion battery.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 20, 2012
    Inventor: Isaiah O. Oladeji
  • Patent number: 8225744
    Abstract: An apparatus for depositing a solid film onto a substrate from a reagent solution includes reservoirs of reagent solutions maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solutions. The chilled solutions are dispensed through showerheads, one at a time, onto a substrate. One of the showerheads includes a nebulizer so that the reagent solution is delivered as a fine mist, whereas the other showerhead delivers reagent as a flowing stream. A heater disposed beneath the substrate maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solutions may be initiated. Each reagent solution contains at least one metal and either S or Se, or both. At least one of the reagent solutions contains Cu. The apparatus and its associated method of use are particularly suited to forming films of Cu-containing compound semiconductors.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 24, 2012
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Publication number: 20120137508
    Abstract: A method for making a solid state cathode comprises the following steps: forming an alkali free first solution comprising at least one transition metal and at least two ligands; spraying this solution onto a substrate that is heated to about 100 to 400° C. to form a first solid film containing the transition metal(s) on the substrate; forming a second solution comprising at least one alkali metal, at least one transition metal, and at least two ligands; spraying the second solution onto the first solid film on the substrate that is heated to about 100 to 400° C. to form a second solid film containing the alkali metal and at least one transition metal; and, heating to about 300 to 1000° C. in a selected atmosphere to react the first and second films to form a homogeneous cathode film. The cathode may be incorporated into a lithium or sodium ion battery.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 7, 2012
    Inventor: Isaiah O. Oladeji