Patents by Inventor Iuri Estrada Gouvea

Iuri Estrada Gouvea has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230279365
    Abstract: The present disclosure relates to biological processes and systems for the production of isopropanol and/or acetone utilizing modified alcohol dehydrogenases that exhibit increased activity with NADH as a cofactor. The disclosure further relates to polynucleotides and polypeptides of the modified alcohol dehydrogenases, and host cells containing the polynucleotides and expressing the polypeptides.
    Type: Application
    Filed: December 20, 2022
    Publication date: September 7, 2023
    Inventors: Verônica Leite QUEIROZ, Lucas Pedersen PARIZZI, Iuri Estrada GOUVEA, Debora Noma OKAMOTO, Rafael Victório Carvalho GUIDO, Alessandro Silva NASCIMENTO, Igor POLIKARPOV
  • Patent number: 11692210
    Abstract: The present disclosure provides recombinant microorganisms and methods for the anaerobic production of 2,4-furandicarboxylic acid from one or more carbon sources. The microorganisms and methods provide redox-balanced and ATP positive pathways for co-producing 2,4-furandicarboxylic acid with ethanol and for co-producing 2,4-furandicarboxylic acid with ethanol and 1-propanol. The method provides recombinant microorganisms that express endogenous and/or exogenous nucleic acid molecules encoding polypeptides that catalyze the conversion of a carbon source into 2,4-furandicarboxylic acid and that coupled the 2,4-furandicarboxylic acid pathway with an additional metabolic pathway.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: July 4, 2023
    Assignee: BRASKEM S.A.
    Inventors: Iuri Estrada Gouvea, Marcos Rogerio Simoes, Mariana Trovo Marchesin, Aline Silva Romão Dumaresq
  • Patent number: 11578347
    Abstract: The present disclosure provides recombinant microorganisms and methods for the anaerobic production of 2,4-furandimethanol from one or more carbon sources. The microorganisms and methods provide redox-balanced and ATP positive pathways for co-producing 2,4-furandimethanol with ethanol and for co-producing 2,4-furandimethanol with ethanol and acetone and/or isopropanol. The method provides recombinant microorganisms that express endogenous and/or exogenous nucleic acid molecules encoding polypeptides that catalyze the conversion of a carbon source into 2,4-furandimethanol and that couple the 2,4-furandimethanol pathway with an additional metabolic pathway. The present disclosure further provides enzymatic production of 2,4-furandicarboxylic acid.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: February 14, 2023
    Assignee: BRASKEM S.A.
    Inventors: Iuri Estrada Gouvea, Ana Karina Brambilla Costa, Marcos Rogerio Simoes, Veronica Leite Queiroz, Aline Silva Romão Dumaresq
  • Patent number: 11566270
    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: January 31, 2023
    Assignee: BRASKEM S.A.
    Inventors: Paulo Moises Raduan Alexandrino, Iuri Estrada Gouvea, Veronica Leite Queiroz, Felipe Cicaroni Fernandes, Bárbara Mano
  • Patent number: 11566269
    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 31, 2023
    Assignee: BRASKEM S.A.
    Inventors: Paulo Moises Raduan Alexandrino, Iuri Estrada Gouvea, Veronica Leite Queiroz, Marcos Rogerio Simões
  • Publication number: 20230002363
    Abstract: The present disclosure provides diglycidyl ethers and esters of 2,4-furandimethanol (2,4-FDME) and of 2,4-furandicarboxylic acid (2,4-FDCA), methods of making diglycidyl ethers and esters of 2,4-FDME and 2,4-FDCA, epoxy resins derived from diglycidyl ethers and esters of 2,4-FDME and 2,4-FDCA, and methods of making epoxy resins derived from diglycidyl ethers and esters of 2,4-FDME and 2,4-FDCA.
    Type: Application
    Filed: June 10, 2022
    Publication date: January 5, 2023
    Inventors: Felipe Cicaroni FERNANDES, Iuri Estrada GOUVÊA, Nei Sebastião DOMINGUES JÚNIOR
  • Patent number: 11530391
    Abstract: The present disclosure relates to biological processes and systems for the production of isopropanol and/or acetone utilizing modified alcohol dehydrogenases that exhibit increased activity with NADH as a cofactor. The disclosure further relates to polynucleotides and polypeptides of the modified alcohol dehydrogenases, and host cells containing the polynucleotides and expressing the polypeptides.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: December 20, 2022
    Assignee: BRASKEM S.A.
    Inventors: Verônica Leite Queiroz, Lucas Pedersen Parizzi, Iuri Estrada Gouvea, Debora Noma Okamoto, Rafael Victório Carvalho Guido, Alessandro Silva Nascimento, Igor Polikarpov
  • Publication number: 20220298535
    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 22, 2022
    Inventors: Paulo Moises Raduan ALEXANDRINO, Iuri Estrada GOUVEA, Veronica Leite QUEIROZ
  • Publication number: 20220243006
    Abstract: The present disclosure provides a copolyester including a dicarboxylic acid component A comprising a terephthalic acid residue or ester-forming derivative thereof, or a mixture thereof, and a 2,4-furandicarboxylic acid residue or ester-forming derivative thereof, or a mixture thereof, and a diol component B comprising an alkanediol residue having from 2 to 22 carbon atoms, wherein the dicarboxylic acid component A has a total molar content, and wherein the 2,4-furandicarboxylic acid residue or ester-forming derivative thereof, is present in an amount of from 0.1 to 10 mol %, with respect to the total molar content of the dicarboxylic acid component A. Inventive copolyesters have a slower crystallization rate, a higher gas barrier to CO2 and O2 and a higher ratio of 14C to 12C as measured by ASTM D6866 when compared to a comparable copolyester comprising isophthalic acid instead of 2,4-furandicarboxylic acid.
    Type: Application
    Filed: January 27, 2022
    Publication date: August 4, 2022
    Inventors: Felipe Cicaroni FERNANDES, Iuri Estrada GOUVEA, Bárbara MANO
  • Patent number: 11339414
    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: May 24, 2022
    Assignee: BRASKEM S.A.
    Inventors: Paulo Moises Raduan Alexandrino, Iuri Estrada Gouvea, Veronica Leite Queiroz
  • Patent number: 11306337
    Abstract: An industrial process using kestose hydrolases to enable the use of sugar mixtures containing 1-kestose in the industrial production of sucrose (as crystallized sugar) by providing a method for the conversion of 1-kestose into sucrose and fructose in a sugar solution, containing kestose and more than 10 mM sucrose (3 g/L), and comprising the enzymatic hydrolysis (preferably using 1-FEH enzymes—EC 3.2.1.153) of 1-kestose. The process further provides a method of producing a polypeptide having 1-kestose hydrolase activity and a composition comprising the polypeptide.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: April 19, 2022
    Assignee: CTC—Centro de Tecnologia Canavieira S.A.
    Inventors: Iuri Estrada Gouvea, Cesar Moises Camilo, Jaime Finguerut, Michael Cook
  • Patent number: 11286490
    Abstract: The present application relates to recombinant microorganisms expressing a dehydratase useful in a one-step, direct fermentative production of one or more primary alkenes from one or more saturated primary or secondary alcohols. Known, well developed high-yielding pathways that use renewable feedstock can be introduced into the recombinant microorganisms to obtain the alcohol precursors. Also provided are methods of producing one or more primary alkenes using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the primary alkene products.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: March 29, 2022
    Assignee: BRASKEM S.A.
    Inventors: Mateus Schreiner Lopes, Daniel Johannes Koch, Iuri Estrada Gouvea, Debora Noma Okamoto, Veronica Leite Queiroz
  • Publication number: 20220090153
    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 24, 2022
    Inventors: Iuri Estrada GOUVEA, Paulo Moises Raduan ALEXANDRINO
  • Publication number: 20220064682
    Abstract: The present disclosure provides recombinant microorganisms and methods for the anaerobic production of 2,4-furandimethanol from one or more carbon sources. The microorganisms and methods provide redox-balanced and ATP positive pathways for co-producing 2,4-furandimethanol with ethanol and for co-producing 2,4-furandimethanol with ethanol and acetone and/or isopropanol. The method provides recombinant microorganisms that express endogenous and/or exogenous nucleic acid molecules encoding polypeptides that catalyze the conversion of a carbon source into 2,4-furandimethanol and that couple the 2,4-furandimethanol pathway with an additional metabolic pathway. The present disclosure further provides enzymatic production of 2,4-furandicarboxylic acid.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 3, 2022
    Inventors: Iuri Estrada GOUVEA, Ana Karina BRAMBILLA COSTA, Marcos Rogerio SIMOES, Veronica Leite QUEIROZ, Aline Silva ROMÃO DUMARESQ
  • Publication number: 20220064683
    Abstract: The present disclosure provides recombinant microorganisms and methods for the anaerobic production of 2,4-furandicarboxylic acid from one or more carbon sources. The microorganisms and methods provide redox-balanced and ATP positive pathways for co-producing 2,4-furandicarboxylic acid with ethanol and for co-producing 2,4-furandicarboxylic acid with ethanol and 1-propanol. The method provides recombinant microorganisms that express endogenous and/or exogenous nucleic acid molecules encoding polypeptides that catalyze the conversion of a carbon source into 2,4-furandicarboxylic acid and that coupled the 2,4-furandicarboxylic acid pathway with an additional metabolic pathway.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 3, 2022
    Inventors: Iuri Estrada GOUVEA, Marcos Rogerio Simoes, Mariana Trovo Marchesin, Aline Silva Romao Dumaresq
  • Publication number: 20210371622
    Abstract: The present disclosure generally relates to a compound of dialkyl ester of 2,4-furandicarboxylic acid, a method of preparing the compound, a polymer composition comprising a polymer and the compound, a method of preparing the polymer composition, a polymer product comprising the polymer composition and a method of using the compound as a plasticizer in the polymer product. The dialkyl ester of 2,4-furandicarboxylic acid of the present disclosure has greater plasticizing efficiency in a polymer composition that that of the standard phthalate and terephthalate-based plasticizers. The polymer product plasticized with the dialkyl ester of 2,4-furandicarboxylic acid may have improved flexibility, durability, processability and safety as compared to the same polymer product plasticized with conventional phthalate and terephthalate-based plasticizers.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 2, 2021
    Inventors: Felipe Cicaroni Fernandes, Iuri Estrada Gouvea, Antonio Rodolfo, JR., Mateus Schreiner Garcez Lopes
  • Publication number: 20210238639
    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
    Type: Application
    Filed: March 31, 2021
    Publication date: August 5, 2021
    Inventors: Paulo Moises Raduan ALEXANDRINO, Iuri Estrada GOUVEA, Veronica Leite QUEIROZ, Felipe Cicaroni FERNANDES, Bárbara MANO
  • Publication number: 20210222217
    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-IMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.
    Type: Application
    Filed: February 1, 2021
    Publication date: July 22, 2021
    Inventors: Paulo Moises Raduan ALEXANDRINO, Iuri Estrada GOUVEA, Veronica Leite QUEIROZ, Marcos Rogerio SIMÕES
  • Patent number: 10941454
    Abstract: In alternative embodiments, provided are non-natural or genetically engineered vinylisomerase-dehydratase enzymes, including alkenol dehydratases, linalool dehydratases and crotyl alcohol dehydratases. In alternative embodiments, provided are non-natural or genetically engineered polypeptides having an activity comprising, for example, a vinylisomerase-dehydratase, an alkenol dehydratase, a linalool dehydratase and/or a crotyl alcohol dehydratase activity, or a combination thereof. In alternative embodiments, also provided are non-natural or genetically engineered nucleic acids (polynucleotides) encoding polypeptides described herein, expression or cloning vehicles comprising or having contained therein nucleic acids as described herein, and non-natural or genetically engineered cells comprising or having contained therein nucleic acids as described herein. In alternative embodiments, also provided are methods for making various organic compounds, including methyl vinyl carbinol and butadiene.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: March 9, 2021
    Assignees: GENOMATICA, INC., BRASKEM S.A.
    Inventors: Stephanie J. Culler, Robert J. Haselbeck, Harish Nagarajan, Iuri Estrada Gouvea, Daniel Johannes Koch, Mateus Schreiner Garcez Lopes, Lucas Pedersen Parizzi
  • Patent number: 10774317
    Abstract: The disclosure provides engineered enzymes that are capable of mediating the conversion of acetoacetyl-CoA to acetoacetate that do not react with the same order of magnitude with acetyl-CoA as they do with acetoacetyl-CoA (e.g., the engineered enzymes have a specific acetoacetyl-CoA hydrolase activity at least 10× higher than its acetyl-CoA hydrolase activity). Additionally, the disclosure provides modified microorganisms that comprise the engineered enzymes disclosed herein and methods of using same.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Avram Michael Slovic, Iuri Estrada Gouvea, Daniel Johannes Koch, Felipe Galzerani