Patents by Inventor Iwao Mitsuishi

Iwao Mitsuishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9520540
    Abstract: A light-emitting device of an embodiment includes a light-emitting element emitting blue excitation light and a first phosphor excited by the blue excitation light and emitting fluorescence. A peak wavelength of the fluorescence is not shorter than 520 nm and shorter than 660 nm and the peak wavelength of the fluorescence shifting in the same direction when a peak wavelength of the blue excitation light shifts. The first phosphor is one of a yellow phosphor emitting yellow fluorescence, a green phosphor emitting green fluorescence, a yellow-green/yellow phosphor emitting yellow-green/yellow fluorescence and a red phosphor emitting red fluorescence.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: December 13, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kunio Ishida, Keiko Albessard, Yasushi Hattori, Iwao Mitsuishi, Yumi Fukuda, Ryosuke Hiramatsu, Aoi Okada, Masahiro Kato
  • Publication number: 20160083649
    Abstract: An embodiment is to provide a phosphor that has favorable temperature characteristics, that can emit yellow light with a wide half-width emission spectrum, and that has high quantum efficiency. The phosphor emits yellow light when excited with light having a luminescence peak in a wavelength range of 250 to 500 nm, and has a crystal structure that is substantially identical to the crystal structure of Sr2Al3Si7ON13. The half-width of a peak at a diffraction peak position 2? in a range of 35.2 to 35.6, detected in X-ray diffraction of the phosphor according to Bragg-Brendano method using a Cu-K? line, is 0.10° or less.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 24, 2016
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Iwao MITSUISHI, Masahiro KATO, Yasushi HATTORI, Yumi FUKUDA, Keiko ALBESSARD
  • Patent number: 9187693
    Abstract: The present embodiments provide a europium-activated oxynitride phosphor and a production method thereof. This phosphor emits red luminescence having a peak at 630 nm or longer and can be produced by use of inexpensive oxides as raw materials containing alkaline earth metals such as strontium. The oxynitride phosphor is activated by a divalent europium and represented by the formula (1): (M1-xEux)AlaSibOcNdCe??(1). In the formula, M is an alkaline earth metal, and x, a, b, c, d and e are numbers satisfying the conditions of 0<x<0.2, 1.3?a?1.8, 3.5?b?4, 0.1?c?0.3, 6.7?d?7.2 and 0.01?e?0.1, respectively.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 17, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naotoshi Matsuda, Yumi Fukuda, Keiko Albessard, Masahiro Kato, Iwao Mitsuishi
  • Patent number: 9190582
    Abstract: A light emitting device according to embodiments includes a light emitting element emitting light having a peak wavelength of 425 nm or more and 465 nm or less, a first phosphor emitting light having a peak wavelength of 485 nm or more and 530 nm or less, a second phosphor emitting light having a peak wavelength longer than that of the first phosphor, and a third phosphor emitting light having a peak wavelength longer than that of the second phosphor. Then, when the peak wavelength of the light emitting element is ?0 (nm) and the peak wavelength of the first phosphor is ?1 (nm), a relation of 30??1??0?70 is satisfied.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: November 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasushi Hattori, Masahiro Kato, Yumi Fukuda, Iwao Mitsuishi
  • Patent number: 9133391
    Abstract: According to one embodiment, the luminescent material exhibits a luminescence peak in a wavelength ranging from 500 to 600 nm when excited with light having an emission peak in a wavelength ranging from 250 to 500 nm. The luminescent material has a composition represented by Formula 1 below: (M1-xCex)2yAlzSi10-zOuNw??Formula 1 wherein M represents Sr and a part of Sr may be substituted by at least one selected from Ba, Ca, and Mg; x, y, z, u, and w satisfy following conditions: 0<x?1, 0.8?y?1.1, 2?z?3.5, u?1 1.8?z?u, and 13?u+w?15.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 15, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi Fukuda, Iwao Mitsuishi, Keiko Albessard
  • Publication number: 20150247085
    Abstract: The embodiment of the present disclosure provides a phosphor exhibiting an emission peak in the wavelength range of 565 to 600 nm under excitation by light having a peak in the wavelength range of 250 to 500 nm. The emission peak has a half width of 115 to 180 nm inclusive. This phosphor has a crystal structure of Sr2Si7Al3ON13, and is activated by cerium.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 3, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Keiko ALBESSARD, Yumi FUKUDA, Kunio ISHIDA, Iwao MITSUISHI, Aoi OKADA, Yasushi HATTORI, Ryosuke HIRAMATSU, Masahiro KATO
  • Patent number: 9048399
    Abstract: Disclosed is a white light emitting device including a semiconductor light emitting element configured to emit near ultraviolet light having a peak wavelength ranging from 380 to 410 nm, a first phosphor layer and a second phosphor layer. The first phosphor layer contains a blue-emitting phosphor configured to emit blue light by the near ultraviolet light, and a red-emitting phosphor activated by trivalent europium and configured to emit red light by the near ultraviolet light. The second phosphor layer contains a green-emitting phosphor configured to emit green light by the near ultraviolet light. The semiconductor light emitting element, the first phosphor layer and the second phosphor layer are laminated in this order to emit white light.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: June 2, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naotoshi Matsuda, Iwao Mitsuishi
  • Patent number: 8974697
    Abstract: According to one embodiment, the luminescent material shows a luminescence peak in a wavelength range of 570 to 670 nm when excited with light having an emission peak in a wavelength range of 250 to 520 nm. The luminescent material includes a host material having a crystal structure substantially same as the crystal structure of Sr2Si7Al3ON13. The host material is activated by Eu, and includes Sr and Ca to satisfy a relationship of 0.008?MCa/(MSr+MCa)?0.114, where MCa is a number of moles of Ca and MSr is a number of moles of Sr.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: March 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiko Albessard, Masahiro Kato, Yumi Fukuda, Iwao Mitsuishi, Takahiro Sato, Shigeya Kimura, Aoi Okada, Naotoshi Matsuda, Ryosuke Hiramatsu, Yasushi Hattori, Kunio Ishida, Hironori Asai
  • Patent number: 8937328
    Abstract: A light emitting device includes a light emitting element that emits light having a wavelength of 250 nm to 500 nm and a fluorescent layer that is disposed on the light emitting element. The fluorescent layer includes a phosphor having a composition expressed by the equation, ((M1?x1Eux1)3?ySi13?zAl3+zO2+uN21?w), and an average particle diameter of 12 ?m or more, wherein in the equation, M is an element that is selected from IA group elements, IIA group elements, IIIA group elements, IIIB group elements except Al, rare-earth elements, and IVB group elements, and x1, y, z, u, and w satisfy each of the inequalities simultaneously, that is to say each of the following inequalities is satisfied by the choice of values of the identified paramaters within the noted ranges of 0<x1<1, ?0.1<y<0.3, ?3<z?1, ?3<u?w?1.5, 2<u, w<21.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: January 20, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Iwao Mitsuishi, Yumi Fukuda, Aoi Okada, Naotoshi Matsuda, Shinya Nunoue, Keiko Albessard, Masahiro Kato
  • Publication number: 20150008817
    Abstract: The embodiment provides a red light-emitting fluorescent substance represented by the following formula (1): (M1-xECx)aM1bAlOcNd??(1). In the formula (1), M is an element selected from the group consisting of IA group elements, IIA group elements, IIIA group elements, IIIB group elements, rare earth elements and IVA group elements; EC is an element selected from the group consisting of Eu, Ce, Mn, Tb, Yb, Dy, Sm, Tm, Pr, Nd, Pm, Ho, Er, Cr, Sn, Cu, Zn, As, Ag, Cd, Sb, Au, Hg, Tl, Pb, Bi and Fe; M1 is different from M and is selected from the group consisting of tetravalent elements; and x, a, b, c and d are numbers satisfying the conditions of 0<x<0.2, 0.55<a<0.80, 2.10<b<3.90, 0<c?0.25 and 4<d<5, respectively. This substance emits luminescence having a peak in the wavelength range of 620 to 670 nm when excited by light of 250 to 500 nm.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 8, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Aoi OKADA, Yumi Fukuda, Naotoshi Matsuda, Iwao Mitsuishi, Shinya Nunoue, Keiko Albessard, Masahiro Kato
  • Patent number: 8921878
    Abstract: A light emitting device according to one embodiment includes a board; a light emitting element mounted on the board, emitting light having a wavelength of 250 nm to 500 nm; a red fluorescent layer formed on the element, including a red phosphor expressed by equation (1), having a semicircular shape with a diameter r; (M1?x1Eux1)aSibAlOcNd??(1) (In the equation (1), M is an element that is selected from IA group elements, IIA group elements, IIIA group elements, IIIB group elements except Al (Aliminum), rare-earth elements, and IVB group elements), an intermediate layer formed on the red fluorescent layer, being made of transparent resin, having a semicircular shape with a diameter D; and a green fluorescent layer formed on the intermediate layer, including a green phosphor, having a semicircular shape. A relationship between the diameter r and the diameter D satisfies equation (2): 2.0r(?m)?D?(r+1000)(?m).
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: December 30, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Iwao Mitsuishi, Kunio Ishida, Yumi Fukuda, Aoi Okada, Naotoshi Matsuda, Keiko Albessard, Shinya Nunoue, Masahiro Kato
  • Publication number: 20140339978
    Abstract: According to one embodiment, the phosphor exhibits a luminescence peak within a wavelength range of 500 to 600 nm when it is excited with light having an emission peak within a wavelength range of 250 to 500 nm. The phosphor has a composition represented by (M1-xCex)2yAlzSi10-zOuNwBs (M represents Sr and a part of Sr may be substituted by at least one selected from the group consisting of Ba, Ca and Mg; and x, y, z, u, w and s satisfy 0<x?1, 0.8?y?1.1, 2?z?3.5, 1<u?1, 1.5?z?u, 13?u+w?15, and 0<s<0.245.
    Type: Application
    Filed: February 20, 2014
    Publication date: November 20, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Aoi Okada, Masahiro Kato, Keiko Albessard, Yumi Fukuda, Iwao Mitsuishi, Yasushi Hattori
  • Patent number: 8858835
    Abstract: The embodiment provides a red light-emitting fluorescent substance represented by the following formula (1): (M1-xECx)aM1bAlOcNd??(1). In the formula (1), M is an element selected from the group consisting of IA group elements, IIA group elements, IIIA group elements, IIIB group elements, rare earth elements and IVA group elements; EC is an element selected from the group consisting of Eu, Ce, Mn, Tb, Yb, Dy, Sm, Tm, Pr, Nd, Pm, Ho, Er, Cr, Sn, Cu, Zn, As, Ag, Cd, Sb, Au, Hg, Tl, Pb, Bi and Fe; M1 is different from M and is selected from the group consisting of tetravalent elements; and x, a, b, c and d are numbers satisfying the conditions of 0<x<0.2, 0.55<a<0.80, 2.10<b<3.90, 0<c?0.25 and 4<d<5, respectively. This substance emits luminescence having a peak in the wavelength range of 620 to 670 nm when excited by light of 250 to 500 nm.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Aoi Okada, Yumi Fukuda, Naotoshi Matsuda, Iwao Mitsuishi, Shinya Nunoue, Keiko Albessard, Masahiro Kato
  • Publication number: 20140299904
    Abstract: A light emitting device according to embodiments includes a light emitting element emitting light having a peak wavelength of 425 nm or more and 465 nm or less, a first phosphor emitting light having a peak wavelength of 485 nm or more and 530 nm or less, a second phosphor emitting light having a peak wavelength longer than that of the first phosphor, and a third phosphor emitting light having a peak wavelength longer than that of the second phosphor. Then, when the peak wavelength of the light emitting element is ?0 (nm) and the peak wavelength of the first phosphor is ?1 (nm), a relation of 30??1??0?70 is satisfied.
    Type: Application
    Filed: March 11, 2014
    Publication date: October 9, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yasushi HATTORI, Masahiro KATO, Yumi FUKUDA, Iwao MITSUISHI
  • Publication number: 20140287234
    Abstract: The present embodiments provide a yellow light-emitting fluorescent substance of high luminous efficiency and also a production method thereof. This substance is represented by the formula (1): (M1-xREx)2yAlzSi10-zOuNw ??(1) (in the formula, M is at least one element selected from the group consisting of Ba, Sr, Ca, Mg, Li, Na and K), and emits luminescence with a peak within 500 to 600 nm when excited by light of 250 to 500 nm. In the emission spectrum of the substance, the emission band with the above peak has a half-width corresponding to an energy difference of 0.457 eV or less. The substance can be obtained by pulverizing a material mixture so that the D90 value may be 5 ?m or less and then by firing the pulverized mixture.
    Type: Application
    Filed: February 19, 2014
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Aoi OKADA, Masahiro KATO, Kunio ISHIDA, Keiko ALBESSARD, Yumi FUKUDA, Iwao MITSUISHI
  • Publication number: 20140264169
    Abstract: The embodiment provides a red light-emitting fluorescent substance represented by the following formula (1): (M1-xECx)aM1bAlOcNd??(1). In the formula (1), M is an element selected from the group consisting of IA group elements, IIA group elements, IIIA group elements, IIIB group elements, rare earth elements and IVA group elements; EC is an element selected from the group consisting of Eu, Ce, Mn, Tb, Yb, Dy, Sm, Tm, Pr, Nd, Pm, Ho, Er, Cr, Sn, Cu, Zn, As, Ag, Cd, Sb, Au, Hg, Tl, Pb, Bi and Fe; M1 is different from M and is selected from the group consisting of tetravalent elements; and x, a, b, c and d are numbers satisfying the conditions of 0<x<0.2, 0.55<a<0.80, 2.10<b<3.90, 0<c?0.25 and 4<d<5, respectively. This substance emits luminescence having a peak in the wavelength range of 620 to 670 nm when excited by light of 250 to 500 nm.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Aoi OKADA, Yumi FUKUDA, Naotoshi MATSUDA, Iwao MITSUISHI, Shinya NUNOUE, Keiko ALBESSARD, Masahiro KATO
  • Publication number: 20140265819
    Abstract: The embodiment of the present disclosure provides a phosphor having such high luminous efficiency as to be capable of realizing a light-emitting device suffering less from color drift even when working with high power. This phosphor is a Ce-activated phosphor having a crystal structure of Sr2Si7Al3ON13, and emitting luminescence with a peak wavelength of 500 to 600 nm under excitation by light with a peak wavelength of 250 to 500 nm. The XRD profile of the phosphor measured with Cu—K? line radiation according to Bragg-Brendano method shows diffraction lines having the intensities I0 and I1 at diffraction angles 2?s in the ranges of 31.55-31.85° and 24.75-250.5°, respectively, on the condition that the ratio of I1/I0 is 0.24 or less.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 18, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Keiko ALBESSARD, Yumi FUKUDA, Kunio ISHIDA, Iwao Mitsuishi, Naotoshi Matsuda, Aoi Okada, Yasushi Hattori, Ryosuke Hiramatsu, Masahiro Kato
  • Publication number: 20140264414
    Abstract: The present disclosure provides a phosphor excellent in temperature characteristic and capable of highly efficiently emitting yellow light with a wide half-width in the emission spectrum. This phosphor emits luminescence with a peak wavelength of 500 to 600 nm under excitation by light with a peak wavelength of 250 to 500 nm, and is represented by the following formula (1): (M1-xCex)2yAlzSi10-zOuNvCw??(1) [M is mainly Sr and may be partly replaced with at least one element selected from the group consisting of Ba, Ca and Mg; and x, y, z, u, v and w satisfy the conditions of 0<x?1, 0.8?y?1.1, 2?z?3.5, 0<u?1.5, 0.01?w?0.1 and 13?u+v+w?15, respectively].
    Type: Application
    Filed: February 20, 2014
    Publication date: September 18, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yumi FUKUDA, Keiko Albessard, Iwao Mitsuishi
  • Publication number: 20140265818
    Abstract: The embodiment of the present disclosure provides yellow luminescent substance having high luminous efficiency. This fluorescent substance is represented by the formula (1): (M1-xREx)2yAlzSi10-zOuNwCla??(1) (in the formula, M is at least one element selected from the group consisting of Ba, Sr, Ca, Mg, Li, Na and K), and it emits luminescence with a peak within 500 to 600 nm when excited by light of 250 to 500 nm.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 18, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Aoi Okada, Masahiro Kato, Keiko Albessard, Yumi Fukuda, Iwao Mitsuishi, Yasushi Hattori
  • Publication number: 20140252391
    Abstract: A light-emitting device of an embodiment includes a light-emitting element emitting blue excitation light and a first phosphor excited by the blue excitation light and emitting fluorescence. A peak wavelength of the fluorescence is not shorter than 520 nm and shorter than 660 nm and the peak wavelength of the fluorescence shifting in the same direction when a peak wavelength of the blue excitation light shifts. The first phosphor is one of a yellow phosphor emitting yellow fluorescence, a green phosphor emitting green fluorescence, a yellow-green/yellow phosphor emitting yellow-green/yellow fluorescence and a red phosphor emitting red fluorescence.
    Type: Application
    Filed: February 20, 2014
    Publication date: September 11, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kunio ISHIDA, Keiko ALBESSARD, Yasushi HATTORI, Iwao MITSUISHI, Yumi FUKUDA, Ryosuke HIRAMATSU, Aoi OKADA, Masahiro KATO