Patents by Inventor J. Clair Batty

J. Clair Batty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200016705
    Abstract: Modular thermal truss plates carry heat in multiple directions. Framing around an array of flat heat pipes provides mechanical and thermal connections to other truss plates, and a base, such as a satellite, thereby supporting thermally active equipment. Walls sandwich banks of flat heat pipes and may bond to a honey comb, metal core conducting heat between multiple walls. Each bank of flat heat pipes passes heat best in one direction, and may be formed of corrugated copper sheets spaced apart by a metal mesh, such as an expanded metal or screen, also stamped or otherwise formed into a corrugated configuration. Joining methods (e.g., brazing, soldering, etc.) increase stiffness, pressure containment, and strength, by binding the two layers of metal sheet to one another.
    Type: Application
    Filed: August 19, 2019
    Publication date: January 16, 2020
    Inventors: J. Clair Batty, Blake Rusch, Scott Schick
  • Patent number: 10384318
    Abstract: Modular thermal truss plates carry heat in multiple directions. Framing around an array of flat heat pipes provides mechanical and thermal connections to other truss plates, and a base, such as a satellite, thereby supporting thermally active equipment. Walls sandwich banks of flat heat pipes and may bond to a honey comb, metal core conducting heat between multiple walls. Each bank of flat heat pipes passes heat best in one direction, and may be formed of corrugated copper sheets spaced apart by a metal mesh, such as an expanded metal or screen, also stamped or otherwise formed into a corrugated configuration. Joining methods (e.g., brazing, soldering, etc.) increase stiffness, pressure containment, and strength, by binding the two layers of metal sheet to one another.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: August 20, 2019
    Assignee: Thermal Management Technologies
    Inventors: J. Clair Batty, Blake Rusch, Scott Schick
  • Publication number: 20170136384
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 18, 2017
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 9533238
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: January 3, 2017
    Assignee: PURESTREAM SERVICES, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Publication number: 20160082362
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 9205347
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: December 8, 2015
    Assignee: PURESTREAM SERVICES, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 9044693
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: June 2, 2015
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 9005404
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 14, 2015
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8986509
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Publication number: 20150044113
    Abstract: A potash-extraction system and method for extracting potash from a brine containing potash without the use of water-consuming evaporation ponds or additional chemicals is disclosed. The potash processing system uses a mechanical-vapor recompression (“MVR”) cycle to separate salt and then potash from a sylvinite brine containing salt and potash. In embodiments, the latent heat recovered from condensing vapor may be used to boil the brine to precipitate some salt and remove some water (in the form of water vapor) from the brine. The remaining potash-concentrated brine may then be cooled to precipitate potash from the solution. The precipitated potash may then be further processed for final use.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 12, 2015
    Applicant: UTAH STATE UNIVERSITY
    Inventors: J. Clair Batty, Brett Boissevain
  • Publication number: 20150014149
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8845865
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 30, 2014
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Publication number: 20140142005
    Abstract: A potash-extraction system and method for extracting potash from a brine containing potash without the use of water-consuming evaporation ponds or additional chemicals is disclosed. The potash processing system uses a vapor-compression cycle (e.g., heat pump or refrigeration system) to separate potash from brine containing potash and NaCl. In embodiments, heat emitted by components of the vapor-compression cycle (e.g., condenser heat exchanger, evaporator heat exchanger) may heat the brine to precipitate some NaCl from the brine. The remaining potash-concentrated brine may then be cooled to precipitate potash from the solution. The precipitated potash may then be further processed for final use.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicant: UTAH STATE UNIVERSITY
    Inventors: J. Clair Batty, Brett Boissevain
  • Patent number: 8425666
    Abstract: Production brines are used to scrub a horizontal stack receiving exhaust from an energy source, controlling, reducing, or both noxious chemicals. Mutual remediation of flows from petroleous production cool and scrub exhausts from flares burning waste hydrocarbons, heaters lowering viscosity of crude oil, engines driving oil pumps or natural gas compressors, and the like. Resulting evaporation of production brines results in distilled water, more concentrated brines to reduce hauling, or, optionally, dehydrated dry waste minerals from the brines. Year-round operation of brine evaporation ponds is facilitated, and may be another source of process pre-heating.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: April 23, 2013
    Assignee: Purestream Technology, LLC
    Inventors: J. Clair Batty, Craig E. Cox, David A. Bell
  • Patent number: 8425664
    Abstract: Petroleous production is associated with effluents well known to foul lines, nozzles, and containers while consuming substantial energy to assist in both production and remediation. A heat exchanger and manifold system maximizes flows, minimizes changes in flow cross-section, and maximizes heat transfer area, while recycling both water and heat between processes. Dirty regions and clean regions result from scrubbing horizontal exhaust stacks and evaporation of production water in concert to remediate one another, while recycling a significant portion of the energy consumed by each. The heat exchanger relies on a manifold having many layered conduits, each connected to a single layer level of one or more cylindrical conduits in the exchanger. The cylinders of the exchanger themselves are arranged in multiple layers, each layer of a heat exchanger element being connected to a single layer of the manifold.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: April 23, 2013
    Assignee: Purestream Technology, LLC
    Inventors: J. Clair Batty, David A. Bell, Craig E. Cox
  • Publication number: 20120205231
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 16, 2012
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Publication number: 20120205232
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 16, 2012
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Publication number: 20120205235
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 16, 2012
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8042606
    Abstract: A substrate formed of a suitable conductive-heat-transfer material is formed with small channels of a size selected to provide surface tension forces dominating a motion of a liquid-phase working fluid. A space above the channels of the substrate provides comparatively unobstructed space for the transport motion of a vapor phase of the working fluid effecting a heat-pipe effect in a multi-dimensional device. Channels may typically be formed in an orthogonal grid providing capillary return of liquids from a comparatively cooler condensation region to a comparatively warmer evaporation region, without any wicks other that the adhesion of the liquid phase working fluid to the vertices of the channels. Interference between the boundary layers of the liquid phase and the vapor phase of the working fluid are minimized by the depth of the channels, and the pedestals formed by the channel walls.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: October 25, 2011
    Assignee: Utah State University Research Foundation
    Inventors: J. Clair Batty, Scott M. Jensen
  • Publication number: 20100257781
    Abstract: Stack gases of a burner, such as a power plant or other combustion source, may be remediated by a captive algae farm cycling some portion of the stack gases through a scrubber, and ultimately out into a manifold feeding a farm composed of tubes hosting the growth of algae. Liquids from the scrubber, including water capturing volatile organic compounds, solid particulates, nitrogen compounds, sulfur compounds, carbon dioxide, and the like, remediate the water and feed the algae farm. Meanwhile, the vapors and other gases provide an environment rich in water vapor, nitrogen compounds acting as fertilizer, and carbon dioxide to feed the algae to promote increased rates of growth. The algae may be recycled as a fuel itself, or may be harvested for use as a soil amendment to enrich the organic content of soils.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 14, 2010
    Inventors: J. Clair Batty, Craig E. Cox, David A. Bell