Patents by Inventor J. Houston Miller

J. Houston Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8063373
    Abstract: This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 22, 2011
    Assignee: The George Washington University
    Inventor: J. Houston Miller
  • Publication number: 20100291537
    Abstract: Embodiments of the invention include additional compositions and related methods and devices for the use of phage-nanoparticle assemblies. Embodiments of the invention include compositions, methods and devices related to phage-nanoparticle assemblies and their use in a variety of methods including detection methods, in vitro and in vivo diagnostic methods, direct and/or indirect therapeutic methods, or combinations thereof. Phage-nanoparticle assemblies of the invention comprise a plurality of nanoparticles complexed with one or more phage particles to form a phage-nanoparticle assembly. In certain aspects, the phage-nanoparticle assembly may also include other agents, including but not limited to organizing agents and/or therapeutic agents.
    Type: Application
    Filed: November 16, 2005
    Publication date: November 18, 2010
    Inventors: Glauco Souza, Wadih Arap, Renata Pasqualini, J. Houston Miller
  • Publication number: 20100012843
    Abstract: This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
    Type: Application
    Filed: June 3, 2009
    Publication date: January 21, 2010
    Applicant: The George Washington University
    Inventor: J. Houston Miller
  • Patent number: 7569823
    Abstract: This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: August 4, 2009
    Assignee: The George Washington University
    Inventor: J. Houston Miller
  • Patent number: 7541586
    Abstract: This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: June 2, 2009
    Assignee: The George Washington University
    Inventor: J. Houston Miller
  • Publication number: 20080111993
    Abstract: This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
    Type: Application
    Filed: February 13, 2007
    Publication date: May 15, 2008
    Inventor: J. Houston Miller
  • Publication number: 20080111077
    Abstract: This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
    Type: Application
    Filed: November 10, 2006
    Publication date: May 15, 2008
    Inventor: J. Houston Miller
  • Publication number: 20040038264
    Abstract: This invention provides an apparatus and method that employs angle dependent light scattering combined with fractal dimension analysis of nanoparticle aggregates of gold and biopolymers, such as protein and nucleic acids, for detection and structural and functional characterization of unknown biopolymers. This is accomplished by detecting ADLS signal changes resulting from Au-biopolymer aggregate formation or from changes in fractal structure of Au-biopolymer aggregates as they specifically interact with other biopolymers. This invention describes an angle dependent light scattering apparatus that provides a sensitive, non-destructive, and dynamic measurement of the fractal dimension of Au-biopolymer aggregates, and provides a means for interpreting those measurements to allow identification of unknown nucleotides. A scattering cell is also provided.
    Type: Application
    Filed: May 13, 2003
    Publication date: February 26, 2004
    Inventors: Glauco R. Souza, J. Houston Miller
  • Patent number: 5252060
    Abstract: An optical method for monitoring the products of combustion, particularly for the detection of upset conditions in the incineration of hazardous waste, is disclosed. On-line detection of upsets is extremely important to avoid sending untreated waste out the stack plume and to avoid the formation of hazardous products of incomplete combustion, such as dioxins. Small hydrocarbons are the strongest candidates for in situ monitoring of combustion efficiency. The combustion is monitored via infrared absorption using tunable diode lasers (TDLs).
    Type: Grant
    Filed: March 27, 1992
    Date of Patent: October 12, 1993
    Inventors: J. Thomas McKinnon, J. Houston Miller