Patents by Inventor Jörg Petzold

Jörg Petzold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11170934
    Abstract: A method is provided for the production of a wound nanocrystalline magnetic core in which a nanocrystalline metal strip made of (Fe1-aMa)100-x-y-z-?-?CuxSiyBzM??X? is pre-wound to form a first coil. An insulating foil is provided that is coated with an adhesive on at least one side. An adhesive is applied to the nanocrystalline metal strip to laminate the insulating foil onto the metal strip and thereby to stabilise the metal strip as it is wound off the coil. The laminated nanocrystalline metal strip and the insulating foil are bifilar wound to form a bifilar, layer-insulated coil.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 9, 2021
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Jörg Petzold, Oliver Friedrich, Volker Kleespies, Johannes Binkofski
  • Patent number: 10892090
    Abstract: A magnet core for low-frequency applications and method for producing a magnet core for low-frequency applications is provided. The magnet core is made of a spiral-wound, soft-magnetic, nanocrystalline strip. The strip essentially has the alloy composition FeRestCoaCubNbcSidBeCf, wherein a, b, c, d, e and f are stated in atomic percent and 0?a?1; 0.7?b?1.4; 2.5?c?3.5; 14.5?d?16.5; 5.5?e?8 and 0?f?1, and cobalt may wholly or partially be replaced by nickel. The magnet core has a saturation magnetostriction ?s of ?s<2 ppm, a starting permeability ?1 of ?1>100 000 and a maximum permeability ?max of ?max>400 000. In addition, a sealing metal oxide coating is provided on the surfaces of the strip.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: January 12, 2021
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventor: Jörg Petzold
  • Publication number: 20200227204
    Abstract: A magnet core for low-frequency applications and method for producing a magnet core for low-frequency applications is provided. The magnet core is made of a spiral-wound, soft-magnetic, nanocrystalline strip. The strip essentially has the alloy composition FeRestCoaCubNbcSidBeCf, wherein a, b, c, d, e and f are stated in atomic percent and 0?a?1; 0.7?b?1.4; 2.5?c?3.5; 14.5?d?16.5; 5.5?e?8 and 0?f?1, and cobalt may wholly or partially be replaced by nickel. The magnet core has a saturation magnetostriction ?s of ?s<2 ppm, a starting permeability ?1 of ?1>100 000 and a maximum permeability ?max of ?max>400 000. In addition, a sealing metal oxide coating is provided on the surfaces of the strip.
    Type: Application
    Filed: July 19, 2016
    Publication date: July 16, 2020
    Inventor: Jörg PETZOLD
  • Publication number: 20190355514
    Abstract: A method is provided for the production of a wound nanocrystalline magnetic core in which a nanocrystalline metal strip made of (Fe1-aMa)100-x-y-z-?-?CuxSiyBzM??X? is pre-wound to form a first coil. An insulating foil is provided that is coated with an adhesive on at least one side. An adhesive is applied to the nanocrystalline metal strip to laminate the insulating foil onto the metal strip and thereby to stabilise the metal strip as it is wound off the coil. The laminated nanocrystalline metal strip and the insulating foil are bifilar wound to form a bifilar, layer-insulated coil.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 21, 2019
    Inventors: Jörg Petzold, Oliver Friedrich, Volker Kleespies, Johannes Binkofski
  • Publication number: 20170011846
    Abstract: A magnet core for low-frequency applications and method for producing a magnet core for low-frequency applications is provided. The magnet core is made of a spiral-wound, soft-magnetic, nanocrystalline strip. The strip essentially has the alloy composition FeRestCoaCubNbcSidBeCf, wherein a, b, c, d, e and f are stated in atomic percent and 0?a?1; 0.7?b?1.4; 2.5?c?3.5; 14.5?d?16.5; 5.5?e?8 and 0?f?1, and cobalt may wholly or partially be replaced by nickel. The magnet core has a saturation magnetostriction ?s of ?s<2 ppm, a starting permeability ?1 of ?1>100 000 and a maximum permeability ?max of ?max>400 000. In addition, a sealing metal oxide coating is provided on the surfaces of the strip.
    Type: Application
    Filed: July 19, 2016
    Publication date: January 12, 2017
    Inventor: Jörg PETZOLD
  • Publication number: 20130214893
    Abstract: Magnet core for low-frequency applications and method for producing a magnet core for low-frequency applications A magnet core for low-frequency applications made of a spiral-wound, soft-magnetic, nanocrystalline strip is provided, the strip essentially having the alloy composition FeRestCoaCubNbcSidBeCf, wherein a, b, c, d, e and f are stated in atomic percent and 0?a?1; 0.7?b?1.4; 2.5?c?3.5; 14.5?d?16.5; 5.5?e?8 and 0?f?1, and cobalt may wholly or partially be replaced by nickel, the magnet core having a saturation magnetostriction ?s of ?s<2 ppm, a starting permeability ?1 of ?1>100 000 and a maximum permeability ?max of ?max>400 000, and a sealing metal oxide coating being provided on the surfaces of the strip.
    Type: Application
    Filed: August 5, 2011
    Publication date: August 22, 2013
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventor: Jörg Petzold
  • Publication number: 20130204555
    Abstract: In order to locate a cable fault in a cable, a testing apparatus applies a test signal to the cable so as to induce an electrical oscillation. The testing apparatus includes a voltage source that generates the test signal, which e.g. ignites an electrical arc at the cable fault or applies a voltage surge to the cable, to cause the electrical oscillation. The apparatus further includes a measured signal evaluation device to measure the resulting oscillations in the time domain or the frequency domain, and carry out a spectral analysis in the frequency domain, so as to automatically determine the location of the fault preferably from the total phase rotation of the signal, the phase rotation of the reflection at the first cable end, the phase rotation of the reflection at the cable fault, and the imaginary part of the propagation constant of the signal in the cable.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 8, 2013
    Inventors: Sven SCHEUSCHNER, Matthias HIRTE, Joerg PETZOLD, Thomas GEBHARDT
  • Patent number: 8344830
    Abstract: A magnet core (1) that is suitable for use in a fault current circuit breaker and that is made of a helically wound, magnetically soft band has a top (4) and a bottom (5), the top (4) and the bottom (5) being formed by side surfaces (16) of the magnetically soft band. The magnet core (1) is fixed in a protective housing (6), and there is a contact cement (11) between the bottom (5) of the magnet core (1) and an inside wall (10) of the housing for fixing the magnet core (1).
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: January 1, 2013
    Assignee: Vaccumschmelze GmbH & Co. KG
    Inventors: Joerg Petzold, Markus Brunner
  • Publication number: 20110250039
    Abstract: The invention relates to a modular carrier for receiving, storing and transporting thin planar workpieces/semi-finished products, such as wafers for photovoltaic elements, in vertical positions that are parallel to each other and uniformly spaced. This problem is solved by a modular design of the carrier. The required components are combined into three modules. The first module is the groove plate having the horizontal support arranged beneath in an angled shape. The second module is formed by the two U-shaped end plates. The third module comprises the spacer rods, which are arranged between said two U-shaped end plates and of which two in each case receive a groove plate at the top and the bottom. The groove plates and the spacer rods are used at the length L, wherein the length L is uniformly graduated. In this way, the carrier can be produced in the length L or n×L, with n always being an integer.
    Type: Application
    Filed: December 14, 2009
    Publication date: October 13, 2011
    Applicant: Q-CELLS SE
    Inventors: Joerg Petzold, Frank Wegert
  • Patent number: 7964043
    Abstract: The invention relates to a method and to a device for carrying out a manufacturing process in which all magnet cores to be produced are first continuously crystallized. Depending on whether the required hysteresis loops should be round, flat or rectangular, the magnet cores are either immediately finished, that is enclosed in housings, conditioned to a rectangular hysteresis loop in a direct-axis magnetic field or to a flat hysteresis loop in a magnetic cross-field and then finished.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: June 21, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Jörg Petzold, Volker Kleespies, Hans-Rainer Hilzinger
  • Patent number: 7861403
    Abstract: A current transformer core has a ratio of the core outside diameter Da to the core inside diameter Di of <1.5, a saturation magnetostriction ?s of =|4| ppm, a circular hysteresis loop with 0.50=Br/Bs=0.85 and an Hcmax=20 mA/cm. The current transformer core is made of a soft magnetic iron alloy in which at least 50% of the alloy structure is occupied by fine-crystalline particles with an average particle size of 100 nm or less, and the iron-based alloy comprises, in essence, one combination.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 4, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Wulf Guenther, Detlef Otte, Joerg Petzold
  • Publication number: 20100265016
    Abstract: A magnet core (1) that is suitable for use in a fault current circuit breaker and that is made of a helically wound, magnetically soft band has a top (4) and a bottom (5), the top (4) and the bottom (5) being formed by side surfaces (16) of the magnetically soft band. The magnet core (1) is fixed in a protective housing (6), and there is a contact cement (11) between the bottom (5) of the magnet core (1) and an inside wall (10) of the housing for fixing the magnet core (1).
    Type: Application
    Filed: July 17, 2008
    Publication date: October 21, 2010
    Applicant: Vacuumschmelze GmbH & Co. kg
    Inventors: Joerg Petzold, Markus Brunner
  • Patent number: 7563331
    Abstract: The invention relates to a method and to a device for carrying out a manufacturing process in which all magnet cores to be produced are first continuously crystallized. Depending on whether the required hysteresis loops should be round, flat or rectangular, the magnet cores are either immediately finished, that is enclosed in housings, conditioned to a rectangular hysteresis loop in a direct-axis magnetic field or to a flat hysteresis loop in a magnetic cross-field and then finished.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: July 21, 2009
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Jörg Petzold, Volker Kleespies, Hans-Rainier Hilzinger
  • Patent number: 7442263
    Abstract: The invention relates to a transductor regulator with a magnetic core which is made up of a nanocrystalline alloy which is almost free of magnetorestriction. The core has as low cyclic magnetization losses as possible and as rectangular a hysterisis cycle as possible. Said alloy has the composition: FeaCobCucM?dSixByM?z, M? representing an element from the group V, Nb, Ta, Ti, Mo, W, Zr, Hf or a combination of these and M? representing an element from the group C, P, Ge, As, Sb, In, O, N or a combination of these and the following conditions applying: a+b+c+d+x+y+z=100%, with a=100%?b?c?d?x?y?z, 0?b?15, 0.5?c?2, 0.1?d?6, 2?x?20, 2?y?18, 0?z?10 and x+y>18. The inventive transductor regulators are particularly advantageously used in motor vehicle voltage supplies, rail power supplies or in aircraft power supplies.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: October 28, 2008
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Wulf Günther, Roman Klinger, Werner Loges, Jörg Petzold
  • Publication number: 20080092366
    Abstract: A current transformer core has a ratio of the core outside diameter Da to the core inside diameter Di of <1.5, a saturation magnetostriction ?s of=|4| ppm, a circular hysteresis loop with 0.50=Br/Bs=0.85 and an Hcmax=20 mA/cm. The current transformer core is made of a soft magnetic iron alloy in which at least 50% of the alloy structure is occupied by fine-crystalline particles with an average particle size of 100 nm or less, and the iron-based alloy comprises, in essence, one combination.
    Type: Application
    Filed: October 23, 2007
    Publication date: April 24, 2008
    Inventors: Wulf Guenther, Detlef Otte, Joerg Petzold
  • Patent number: 7358844
    Abstract: A current transformer core has a ratio of the core outside diameter Da to the core inside diameter Di of <1.5, a saturation magnetostriction ?s of =|4| ppm, a circular hysteresis loop with 0.50=Br/Bs=0.85 and an Hcmax=20 mA/cm. The current transformer core is made of a soft magnetic iron alloy in which at least 50% of the alloy structure is occupied by fine-crystalline particles with an average particle size of 100 nm or less, and the iron-based alloy comprises, in essence, one combination.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: April 15, 2008
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Wulf Guenther, Detlef Otte, Joerg Petzold
  • Publication number: 20070126546
    Abstract: A current transformer core has a ratio of the core outside diameter Da to the core inside diameter Di of <1.5, a saturation magnetostriction ?s of=|4| ppm, a circular hysteresis loop with 0.50=Br/Bs 0.85 and an Hcmax=20 mA/cm. The current transformer core is made of a soft magnetic iron alloy in which at least 50% of the alloy structure is occupied by fine-crystalline particles with an average particle size of 100 nm or less, and the iron-based alloy comprises, in essence, one combination.
    Type: Application
    Filed: November 17, 2006
    Publication date: June 7, 2007
    Inventors: Wulf Guenther, Detlef Otte, Joerg Petzold
  • Patent number: 7042310
    Abstract: The invention relates to a high-pass branch (7) of a frequency separating filter for ADSL systems comprising inductive components (11, 14) which dispose of magnet cores made of a soft magnetic amorphous or nanocrystalline. As a result, frequency separating filters are provided which comprise small structural shapes and which have especially beneficial properties in the relevant frequency and temperature range.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: May 9, 2006
    Assignee: Vacuumschmelze GmbH
    Inventors: Joerg Petzold, Johannes Beichler, Dirk Heumann
  • Patent number: 6580347
    Abstract: Magnetic cores including coiled amorphous ferromagnetic alloy strips are addressed. The composition of the alloy essentially corresponds to the formula Coa(Fe1−xMnx)bNicXdSicBfCg, where X is at least one of the elements V, Nb, Ta, Cr, Mo, W, Ge, and P; and a, b, c, d, e, f, and g are indicated in atom percent and meet the following conditions: 40≦a≦82; 3≦b≦10, 0≦c≦30; 0≦d≦5; 0≦e≦20; 7≦f≦26; 0≦g≦3; with 15≦d+e+f+g≦33 and 0≦x≦1.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: June 17, 2003
    Assignee: Vacuumschmelze GmbH
    Inventors: Detlef Otte, Jörg Petzold
  • Patent number: 6563411
    Abstract: A current transformer for alternating current with direct current components is proposed, consisting of at least one transformer core with a primary winding and at least one secondary winding to which a burden resistor is connected in parallel and terminates a secondary circuit with low resistance. The transformer core comprises a closed ring core with no air gap produced from a strip made of an amorphous ferromagnetic alloy that is practically free from magnetostriction and has permeability &mgr;<1400. Particularly appropriate alloys for such a strip ring core have been shown to be cobalt-based alloys consisting essentially of the formula Coa(Fe1-xMnx)bNicXdSieBfCg. where X is at least one of the elements V, Nb, Ta, Cr, Mo, W, Ge and P, a-g are given in atomic % and whereby a, b, c, d, e, f, g and x satisfy the following conditions: 40≦a≦82; 2≦b≦10; 0≦c≦30; 0≦d≦5; 0≦e≦15; 7≦f≦26; 0≦g≦3; with 15≦d+e+f+g≦30 and 0≦x<1.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 13, 2003
    Assignee: Vacuumschmelze GmbH
    Inventors: Detlef Otte, Joerg Petzold