Patents by Inventor Jörg Remele

Jörg Remele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846245
    Abstract: A method for a model-based open-loop and closed-loop control of an internal combustion engine includes the steps of: determining, via a combustion model, injection system setpoint values for controlling injection system actuators, according to a setpoint torque; adapting, during an operation of the internal combustion engine, the combustion model according to a model value, the model value being calculated from a first Gaussian process model for representing a base grid and a second Gaussian process model for representing adaptation data points; determining, by an optimizer, a minimized measure of quality by changing the injection system setpoint values within a prediction horizon, and, in an event that the minimized measure of quality is found, the injection system setpoint values are set as critical for adjusting an operating point of the internal combustion engine; and monitoring the model value in respect of a monotony which is predefined.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: December 19, 2023
    Assignee: Rolls-Royce Solutions GmbH
    Inventors: Daniel Bergmann, Knut Graichen, Karsten Harder, Jens Niemeyer, Jörg Remele
  • Publication number: 20230258144
    Abstract: A method for the model-based open-loop and closed-loop control of an internal combustion engine, in which injection system set points for activating the injection system actuator are calculated as a function of a torque setpoint via a combustion model, and gas path set points for activating the gas path actuators are calculated via a gas path model. A measure of quality is calculated by an optimizer as a function of the injection system set points and the gas path set points. The measure of quality is minimized by the optimizer by changing the injection system set points and gas path set points within a prediction horizon. By using the minimized measure of quality, the injection system set points and gas path set points are set by the optimizer as definitive for adjusting the operating point of the internal combustion engine.
    Type: Application
    Filed: June 12, 2018
    Publication date: August 17, 2023
    Inventors: Jens NIEMEYER, Andreas FLOHR, Jörg REMELE
  • Publication number: 20230193846
    Abstract: A method for operating an internal combustion engine, the method including the steps of: (a) actuating an injector to introduce a pre-injection amount of a fuel into a combustion chamber of the internal combustion engine; (b) determining, for an operating cycle of the combustion chamber in which the injector was actuated in the step (a), a pressure gradient characteristic value which is characteristic of a combustion chamber pressure gradient in the combustion chamber; (c) repeating the steps (a) and (b) a plurality of times; (d) determining a skew of a distribution of a plurality of pressure gradient characteristic values determined in the step (c); and (e) changing or maintaining an actuation of the injector depending on the skew determined in the step (d).
    Type: Application
    Filed: February 14, 2023
    Publication date: June 22, 2023
    Applicant: Rolls-Royce Solutions GmbH
    Inventors: Jörg Remele, Aron Toth, Tobias Frank
  • Publication number: 20220356852
    Abstract: A method for a model-based open-loop and closed-loop control of an internal combustion engine includes the steps of: determining, via a combustion model, injection system setpoint values for controlling injection system actuators, according to a setpoint torque; adapting, during an operation of the internal combustion engine, the combustion model according to a model value, the model value being calculated from a first Gaussian process model for representing a base grid and a second Gaussian process model for representing adaptation data points; determining, by an optimizer, a minimized measure of quality by changing the injection system setpoint values within a prediction horizon, and, in an event that the minimized measure of quality is found, the injection system setpoint values are set as critical for adjusting an operating point of the internal combustion engine; and monitoring the model value in respect of a monotony which is predefined.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Applicant: Rolls-Royce Solutions GmbH
    Inventors: Daniel Bergmann, Knut Graichen, Karsten Harder, Jens Niemeyer, Jörg Remele
  • Patent number: 11319888
    Abstract: A method for regulation of an internal combustion engine with an SCR catalytic converter in which the operating point of the engine is predefined by an engine control unit and the operating point of the catalytic converter is predefined by an SCR control unit. An overall system quality measure is calculated by an optimizer in accordance with fed back values of the engine control unit and fed back values of the SCR control unit, by changing the default values for the engine control unit and the SCR control unit, the optimizer minimizes the overall system quality measure for a prediction horizon regarding operating costs. On the basis of the minimized overall system quality measure the optimizer sets the default values for the engine control unit and the default values for the SCR control unit as decisive for setting the operating point of the engine and the catalytic converter.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: May 3, 2022
    Assignee: Rolls-Royce Solutions GmbH
    Inventors: Knut Graichen, Daniel Bergmann, Roman Geiselhart, Jens Niemeyer, Jörg Remele, Karsten Harder, Tim Späder
  • Patent number: 11293365
    Abstract: A method for operating an internal combustion engine, including aligning an injection behavior of the number of injectors. Aligning the injection behavior includes switching off one injector of the number of injectors, detecting a signal of the internal combustion engine that is to be assigned to the switched off injector, determining an alignment characteristic from the signal and assigning the alignment characteristic to the switched off injector as an alignment characteristic assigned to the injector, and switching on the previously switched off injector. Aligning the injection behavior further includes performing the aforementioned steps sequentially for the other injectors of the number of injectors and correcting a control of an injector that is to be corrected using the measured value assigned to the injector that is to be corrected.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 5, 2022
    Assignee: Rolls-Royce Solutions GmbH
    Inventors: Tobias Frank, Jörg Remele, Aron Toth
  • Publication number: 20210231071
    Abstract: A method for regulation of an internal combustion engine with an SCR catalytic converter in which the operating point of the engine is predefined by an engine control unit and the operating point of the catalytic converter is predefined by an SCR control unit. An overall system quality measure is calculated by an optimizer in accordance with fed back values of the engine control unit and fed back values of the SCR control unit, by changing the default values for the engine control unit and the SCR control unit, the optimizer minimizes the overall system quality measure for a prediction horizon regarding operating costs. On the basis of the minimized overall system quality measure the optimizer sets the default values for the engine control unit and the default values for the SCR control unit as decisive for setting the operating point of the engine and the catalytic converter.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 29, 2021
    Applicant: MTU Friedrichshafen GmbH
    Inventors: Knut Graichen, Daniel Bergmann, Roman Geiselhart, Jens Niemeyer, Jörg Remele, Karsten Harder, Tim Späder
  • Publication number: 20210180535
    Abstract: A method for the model-based control and regulation of an internal combustion engine. The method includes calculating, as a function of a set torque, injection system set values for controlling the injection system actuators via a combustion model and calculating gas path set values for controlling the gas path actuators via a gas path model. The combustion model is adapted during operation of the internal combustion engine into the form of a complete data-based model. A measure of quality is minimized by an optimizer by changing the injection system set values and gas path set values within a prediction horizon, and the injection system set values and gas path set values are set by the optimizer, which is critical for adjusting the operating point of the internal combustion engine by using the minimized measure of quality.
    Type: Application
    Filed: February 2, 2021
    Publication date: June 17, 2021
    Applicant: MTU Friedrichshafen GmbH
    Inventors: Knut Graichen, Michael Buchholz, Daniel Bergmann, Jens Niemeyer, Jörg Remele
  • Publication number: 20210115868
    Abstract: A method for operating an internal combustion engine, including aligning an injection behavior of the number of injectors. Aligning the injection behavior includes switching off one injector of the number of injectors, detecting a signal of the internal combustion engine that is to be assigned to the switched off injector, determining an alignment characteristic from the signal and assigning the alignment characteristic to the switched off injector as an alignment characteristic assigned to the injector, and switching on the previously switched off injector. Aligning the injection behavior further includes performing the aforementioned steps sequentially for the other injectors of the number of injectors and correcting a control of an injector that is to be corrected using the measured value assigned to the injector that is to be corrected.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 22, 2021
    Applicant: MTU Friedrichshafen GmbH
    Inventors: Tobias Frank, Jörg Remele, Aron Toth
  • Patent number: 10975795
    Abstract: A method for model-based control and regulation of an internal combustion engine. An emission class for operating the engine is read from a first library by an optimizer; a maximum mechanical component load is read from a second library by the optimizer using the engine type; and the emission class and the component load are set as mandatory for a combustion model and a gas path model. Injection system target values for actuating injection system actuators are calculated using the combustion model based on a target torque. Gas path target values for actuating gas path actuators are calculated using the gas path model based on the target torque. A quality measurement is calculated by the optimizer based on the injection system and gas path target values. The quality measurement is minimized by the optimizer by changing the injection system and gas path target values within a prediction horizon.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: April 13, 2021
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Jens Niemeyer, Andreas Flohr, Jörg Remele, Christian Wolf
  • Patent number: 10865679
    Abstract: A method for operating an exhaust after-treatment system including an SCR-catalyst, a metering device for dosing a reducing agent being controlled on the basis of a determining variable that influences a nitrogen-oxide concentration downstream of the SCR-catalyst. A breakthrough identification is carried out for the SCR-catalyst, wherein if a breakthrough is identified, the determining variable is altered to a higher nitrogen-oxide concentration downstream of the SCR-catalyst and the metering device is controlled in order to dose the reducing agent on the basis of the altered determining variable.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: December 15, 2020
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Klaus Rusch, Jörg Remele, Jens Niemeyer
  • Publication number: 20200240347
    Abstract: A method for model-based control and regulation of an internal combustion engine. An emission class for operating the engine is read from a first library by an optimizer; a maximum mechanical component load is read from a second library by the optimizer using the engine type; and the emission class and the component load are set as mandatory for a combustion model and a gas path model. Injection system target values for actuating injection system actuators are calculated using the combustion model based on a target torque. Gas path target values for actuating gas path actuators are calculated using the gas path model based on the target torque. A quality measurement is calculated by the optimizer based on the injection system and gas path target values. The quality measurement is minimized by the optimizer by changing the injection system and gas path target values within a prediction horizon.
    Type: Application
    Filed: July 20, 2018
    Publication date: July 30, 2020
    Inventors: Jens NIEMEYER, Andreas FLOHR, Jörg REMELE, Christian WOLF
  • Patent number: 10669962
    Abstract: A method for predictive open-loop and/or closed-loop control of an internal combustion engine with control variables pursuant to a model of the engine with characterizing variables and a control circuit for the control variables. The control variables are adjusted in an open-loop or closed-loop manner by measuring actual values and specifying target values of the characterizing variables and, optionally, depending on the boundary and/or environmental and/or ageing conditions. The characterizing variables are controlled pursuant to a model of the engine with the characterizing variables and a control circuit with the control variables. The controlling is part of a model-based predictive control, wherein the characterizing variables of the engine model are calculated and the control variables of the engine are adjusted in a predictively controlled manner.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: June 2, 2020
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Michael Buchholz, Knut Graichen, Karsten Harder, Jens Niemeyer, Jörg Remele
  • Publication number: 20180216558
    Abstract: A method for predictive open-loop and/or closed-loop control of an internal combustion engine with control variables pursuant to a model of the engine with characterizing variables and a control circuit for the control variables. The control variables are adjusted in an open-loop or closed-loop manner by measuring actual values and specifying target values of the characterizing variables and, optionally, depending on the boundary and/or environmental and/or ageing conditions. The characterizing variables are controlled pursuant to a model of the engine with the characterizing variables and a control circuit with the control variables. The controlling is part of a model-based predictive control, wherein the characterizing variables of the engine model are calculated and the control variables of the engine are adjusted in a predictively controlled manner.
    Type: Application
    Filed: October 10, 2016
    Publication date: August 2, 2018
    Inventors: Michael BUCHHOLZ, Knut GRAICHEN, Karsten HARDER, Jens NIEMEYER, Jörg REMELE
  • Publication number: 20180202338
    Abstract: A method for operating an exhaust after-treatment system including an SCR-catalyst, a metering device for dosing a reducing agent being controlled on the basis of a determining variable that influences a nitrogen-oxide concentration downstream of the SCR-catalyst. A breakthrough identification is carried out for the SCR-catalyst, wherein if a breakthrough is identified, the determining variable is altered to a higher nitrogen-oxide concentration downstream of the SCR-catalyst and the metering device is controlled in order to dose the reducing agent on the basis of the altered determining variable.
    Type: Application
    Filed: June 28, 2016
    Publication date: July 19, 2018
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Klaus RUSCH, Jörg REMELE, Jens NIEMEYER
  • Patent number: 9779218
    Abstract: In a method for a model-based determination of a temperature distribution of an exhaust gas post-treatment unit, a differentiation is made between steady operating states and non-steady operating states by taking into account the axial and the radial temperature distribution, and, on the basis of virtual segmentation of the post-treatment unit, in particular the radial heat transfer to the surroundings is taken into account in the model-based determination for steady operating states, and for non-steady operating states the heat transfer from the exhaust gas which flows axially through the post-treatment unit to the segments is taken into account by a heat transfer coefficient k.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: October 3, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Marc Hehle, Ralf Müller, Jens Niemeyer, Jörg Remele, Guido Schäffner, Holger Sinzenich, Tim Späder
  • Patent number: 9689329
    Abstract: The invention relates to a method for detecting the failure of injectors in an internal combustion engine, comprising the following steps: measuring a crank angle signal; transforming the crank angle signal into the frequency range by means of a discrete Fourier transformation; switching off each injector once and in a sequential manner; detecting and storing an angle of the harmonic of the 0.5th order of the Fourier-transformed crank angle signal for each switched-off injector once and in a sequential manner; continuous detection and storage of an angle and an amount of the harmonic of the 0.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: June 27, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Jörg Remele, Aron Toth
  • Patent number: 9664134
    Abstract: The invention relates to a method for adjusting an injection behavior of injectors in an internal combustion engine, including the following steps: switching off an injector; detecting a crank angle signal of the internal combustion engine; transforming the crank angle signal into the frequency range by way of a discrete Fourier transformation; detecting and storing a quantity of the harmonic of the 0.5th order of the Fourier transform of the crank angle signal, and assigning the quantity to the switched-off injector; switching on the switched-off injector; performing the previous steps sequentially for all injectors of the internal combustion engine; forming an average value of the stored quantities with respect to all injectors, and correcting the control of the injectors using a deviation from the average value of a quantity associated with an injector that is to be corrected.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: May 30, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Jörg Remele, Aron Toth
  • Patent number: 9617934
    Abstract: A method for torque control of an internal combustion engine includes a pressure sensor that is associated with at least one, but at the most two cylinders of the internal combustion engine, whereby an cylinder internal pressure for the cylinder associated with the pressure sensor is detected. The method carries out an adjustment of injection characteristics for the injectors allocated to the individual cylinders of the internal combustion engine by way of a method which is independent from the detected cylinder pressure. A torque control for the internal combustion engine is performed based on the detected cylinder pressure.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: April 11, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Jörg Remele, Aron Toth
  • Patent number: 9617962
    Abstract: Exemplary illustrations are provided of a common rail system for an internal combustion engine, having a rail for fuel and an injector for the purpose of injecting the fuel into a working space of the internal combustion engine, said injector having a fluid connection to said rail via a high-pressure conduit. The high-pressure conduit may have a high-pressure component with an individual reservoir, and the high-pressure conduit and/or the rail may have a pressure measurement device. The pressure measurement device may be coupled to a local logic and storage device of a decentralized, local electronic device which is designed for the purpose of locally analyzing and storing measurement data of the pressure measurement device, e.g., injector data and/or rail data, and the pressure measurement device is connected to the central electronic device via a bus, with the local logic and storage device connected between the same.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 11, 2017
    Assignee: MTU Friedrichschafen GmbH
    Inventors: Manuel Boog, Gerald Fast, Robby Gerbeth, Michael Walder, Ralf Speetzen, Jörg Remele