Patents by Inventor Jack L. Collins

Jack L. Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8753534
    Abstract: Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: June 17, 2014
    Inventor: Jack L. Collins
  • Patent number: 8501825
    Abstract: Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: August 6, 2013
    Inventors: Jack L. Collins, Rodney D. Hunt, Frederick C. Montgomery
  • Patent number: 8436052
    Abstract: Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: May 7, 2013
    Inventors: Jack L. Collins, Anthony Chi
  • Publication number: 20110166017
    Abstract: Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Inventors: Jack L. Collins, Rodney D. Hunt, Frederick C. Montgomery
  • Publication number: 20110166016
    Abstract: Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Inventors: Jack L. Collins, Anthony Chi
  • Publication number: 20110163265
    Abstract: Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Inventor: Jack L. Collins
  • Patent number: 7666387
    Abstract: The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 23, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Jack L Collins, Leslie R Dole, Juan J Ferrada, Charles W Forsberg, Marvin J Haire, Rodney D Hunt, Benjamin E Lewis, Jr., Raymond G Wymer
  • Publication number: 20090104111
    Abstract: The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 23, 2009
    Applicant: UT-BATTELLE, LLC
    Inventors: Jack L. Collins, Leslie R. Dole, Juan J. Ferrada, Charles W. Forsberg, Marvin J. Haire, Rodney D. Hunt, Benjamin E. Lewis, JR., Raymond G. Wymer
  • Patent number: 6821474
    Abstract: The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO3, PbTiO3, SrZrO3) structure. The sintered beads are incorporated into a selected polymer matrix.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: November 23, 2004
    Assignee: UT-Battelle, LLC
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins, John J. Felten
  • Publication number: 20040060730
    Abstract: The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO3, PbTiO3, SrZrO3) structure. The sintered beads are incorporated into a selected polymer matrix.
    Type: Application
    Filed: March 18, 2003
    Publication date: April 1, 2004
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins, John J. Felten
  • Patent number: 6602919
    Abstract: Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: August 5, 2003
    Assignee: UT-Battelle LLC
    Inventor: Jack L. Collins
  • Patent number: 6600645
    Abstract: The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO3, PbTiO3, SrZrO3) structure. The sintered beads are incorporated into a selected polymer matrix.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: July 29, 2003
    Assignees: UT-Battelle, LLC, E. I. Dupont de Nemours and Company
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins, John J. Felten
  • Patent number: 6599493
    Abstract: The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or s
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: July 29, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Jack L. Collins, Robert J. Lauf, Kimberly K. Anderson
  • Publication number: 20030129387
    Abstract: The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe12O19 or SrFe12O19) crystal structure.
    Type: Application
    Filed: September 25, 2002
    Publication date: July 10, 2003
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins
  • Publication number: 20030021747
    Abstract: The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or s
    Type: Application
    Filed: July 27, 2001
    Publication date: January 30, 2003
    Inventors: Jack L. Collins, Robert J. Lauf, Kimberly K. Anderson
  • Publication number: 20030021985
    Abstract: The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe12O19 or SrFe12O19) crystal structure.
    Type: Application
    Filed: September 25, 2002
    Publication date: January 30, 2003
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins
  • Patent number: 6492016
    Abstract: The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe12O19 or SrFe12O19) crystal structure.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: December 10, 2002
    Assignee: UT-Battelle, LLC
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins
  • Patent number: 5821186
    Abstract: The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of b
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: October 13, 1998
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: Jack L. Collins
  • Patent number: 4502987
    Abstract: Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.
    Type: Grant
    Filed: September 28, 1982
    Date of Patent: March 5, 1985
    Assignee: The United State of America as represented by The United States Department of Energy
    Inventors: Milton H. Lloyd, Jack L. Collins, Sam E. Shell