Patents by Inventor Jae-Gyung Ahn

Jae-Gyung Ahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10103139
    Abstract: An integrated circuit structure includes: a semiconductor substrate; a shallow trench isolation (STI) region in the semiconductor substrate; one or more active devices formed on the semiconductor substrate; and a resistor array having a plurality of resistors disposed above the STI region; wherein the resistor array comprises a portion of one or more interconnect contact layers that are for interconnection to the one or more active devices.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: October 16, 2018
    Assignee: XILINX, INC.
    Inventors: Nui Chong, Jae-Gyung Ahn, Ping-Chin Yeh, Cheang-Whang Chang
  • Publication number: 20170012041
    Abstract: An integrated circuit structure includes: a semiconductor substrate; a shallow trench isolation (STI) region in the semiconductor substrate; one or more active devices formed on the semiconductor substrate; and a resistor array having a plurality of resistors disposed above the STI region; wherein the resistor array comprises a portion of one or more interconnect contact layers that are for interconnection to the one or more active devices.
    Type: Application
    Filed: July 7, 2015
    Publication date: January 12, 2017
    Applicant: XILINX, INC.
    Inventors: Nui Chong, Jae-Gyung Ahn, Ping-Chin Yeh, Cheang-Whang Chang
  • Patent number: 8653844
    Abstract: A multi-fingered device can be calibrated for performance. The multi-fingered device can include a first finger configured to remain active and a second finger that is initially deactivated concurrent with the first finger being active. A measure of degradation for the multi-fingered device within an IC can be determined. The measure of degradation can be compared with a degradation threshold. Responsive to determining that the measure of degradation meets the degradation threshold, a finger of the multi-fingered device can be activated.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: February 18, 2014
    Assignee: Xilinx, Inc.
    Inventors: Sharmin Sadoughi, Jae-Gyung Ahn
  • Patent number: 8354671
    Abstract: A technique for setting Vgg in an IC is disclosed. The technique includes specifying a design reliability lifetime for the IC, and a relationship between maximum gate bias and gate dielectric thickness for the IC sufficient to achieve the design reliability lifetime is established. The IC is fabricated and the gate dielectric thickness is measured. A maximum gate bias voltage is determined according to the gate dielectric thickness and the relationship between maximum gate bias and gate dielectric thickness, and a Vgg trim circuit of the IC is set to provide Vgg having the maximum gate bias voltage that will achieve the design reliability lifetime according to the measured gate dielectric thickness.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: January 15, 2013
    Assignee: Xilinx, Inc.
    Inventors: Hsung Jai Im, Henley Liu, Jae-Gyung Ahn, Tony Le, Patrick J. Crotty
  • Patent number: 8350253
    Abstract: An integrated circuit (“IC”) fabricated on a semiconductor substrate has an active gate structure formed over a channel region in the semiconductor substrate. A dummy gate structure is formed on a dielectric isolation structure. The dummy gate structure and the active gate structure have the same width. A sidewall spacer on the dummy gate structure overlies a semiconductor portion between a strain-inducing insert and the dielectric isolation structure.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: January 8, 2013
    Assignee: Xilinx, Inc.
    Inventors: Bei Zhu, Hong-Tze Pan, Bang-Thu Nguyen, Qi Lin, Zhiyuan Wu, Ping-Chin Yeh, Jae-Gyung Ahn, Yun Wu
  • Patent number: 8329568
    Abstract: In one embodiment of the present invention, a field effect transistor device is provided. The field effect transistor device comprises an active area, including a first semiconductor material of a first conductivity type. A channel region is included within the active area. A gate region overlays the channel region, and the first source/drain region and the second source/drain region are embedded in the active area and spaced from each other by the channel region. The first source/drain region and the second source/drain region each include a second semiconductor material of a second conductivity type opposite of the first conductivity type. A well-tap region is embedded in the active area and spaced from the first source/drain region by the channel region and the second source/drain region. The well-tap region includes the second semiconductor material of the first conductivity type. The first source/drain region and the second source/drain region and the well-tap region are epitaxial deposits.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: December 11, 2012
    Assignee: Xilinx, Inc.
    Inventors: Jae-Gyung Ahn, Myongseob Kim, Ping-Chin Yeh, Zhiyuan Wu, John Cooksey
  • Publication number: 20120229203
    Abstract: A multi-fingered device can be calibrated for performance. The multi-fingered device can include a first finger configured to remain active and a second finger that is initially deactivated concurrent with the first finger being active. A measure of degradation for the multi-fingered device within an IC can be determined. The measure of degradation can be compared with a degradation threshold. Responsive to determining that the measure of degradation meets the degradation threshold, a finger of the multi-fingered device can be activated.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Applicant: XILINX, INC.
    Inventors: Sharmin Sadoughi, Jae-Gyung Ahn
  • Patent number: 7956385
    Abstract: A circuit for protecting a transistor during the manufacture of an integrated circuit device is disclosed. The circuit comprises a transistor having a gate formed over an active region formed in a die of the integrated circuit device; a protection element formed in the die of the integrated circuit device; and a programmable interconnect coupled between the gate of the transistor and the protection element, the programmable interconnect enabling the protection element to be decoupled from the transistor.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: June 7, 2011
    Assignee: Xilinx, Inc.
    Inventors: Yuhao Luo, Shuxian Wu, Xin X. Wu, Jae-Gyung Ahn, Deepak K. Nayak, Daniel Gitlin
  • Patent number: 7772093
    Abstract: A method of protecting a transistor formed on a die of an integrated circuit is disclosed. The method comprises forming an active region of the transistor on the die; forming a gate of the transistor over the active region; coupling a primary contact to the gate of the transistor; coupling a programmable element between the gate of the transistor and a protection element; and decoupling the protection element from the gate of the transistor by way of the programmable element. Circuits for protecting a transistor formed on a die of an integrated circuit are also disclosed.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 10, 2010
    Assignee: Xilinx, Inc.
    Inventors: Yuhao Luo, Shuxian Wu, Xin X. Wu, Jae-Gyung Ahn, Deepak Kumar Nayak, Daniel Gitlin
  • Publication number: 20090108337
    Abstract: A method of protecting a transistor formed on a die of an integrated circuit is disclosed. The method comprises forming an active region of the transistor on the die; forming a gate of the transistor over the active region; coupling a primary contact to the gate of the transistor; coupling a programmable element between the gate of the transistor and a protection element; and decoupling the protection element from the gate of the transistor by way of the programmable element. Circuits for protecting a transistor formed on a die of an integrated circuit are also disclosed.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Applicant: Xilinx, Inc.
    Inventors: Yuhao Luo, Shuxian Wu, Xin X. Wu, Jae-Gyung Ahn, Deepak Kumar Nayak, Daniel Gitlin
  • Patent number: 7419748
    Abstract: A photomask and a method for forming a photomask are disclosed in which the photomask pattern is modified to bridge features that are likely to produce electrostatic discharge related defects. In one embodiment those adjacent features that are closely spaced together and have a high surface area differential, are bridged using a bridge that has a width less than the minimum optical resolution of the photolithography process.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: September 2, 2008
    Assignee: Integrated Device Technology, Inc.
    Inventor: Jae-Gyung Ahn
  • Patent number: 7388262
    Abstract: A rapid thermal nitridation (RTN) process produces a nitrogen concentration gradient in an oxynitride layer to compensate for transistor threshold voltage effects from a thickness gradient in the oxynitride layer. The nitrogen concentration gradient is selected to allow greater dopant penetration through thicker gate dielectrics in PMOS transistors formed using the oxynitride layer. Any increases in threshold voltage due to thicker gate dielectrics are counteracted by corresponding decreases in threshold voltage due to dopant penetration, allowing consistent threshold voltage values to be maintained for all PMOS transistors on a single wafer. The nitrogen concentration gradient can be introduced by regulating the flow of nitrous oxide during RTN processing to cause an accumulation of atomic oxygen to develop within the process chamber.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: June 17, 2008
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jae-Gyung Ahn, Youngtag Woo
  • Publication number: 20050093109
    Abstract: A rapid thermal nitridation (RTN) process produces a nitrogen concentration gradient in an oxynitride layer to compensate for transistor threshold voltage effects from a thickness gradient in the oxynitride layer. The nitrogen concentration gradient is selected to allow greater dopant penetration through thicker gate dielectrics in PMOS transistors formed using the oxynitride layer. Any increases in threshold voltage due to thicker gate dielectrics are counteracted by corresponding decreases in threshold voltage due to dopant penetration, allowing consistent threshold voltage values to be maintained for all PMOS transistors on a single wafer. The nitrogen concentration gradient can be introduced by regulating the flow of nitrous oxide during RTN processing to cause an accumulation of atomic oxygen to develop within the process chamber.
    Type: Application
    Filed: November 16, 2004
    Publication date: May 5, 2005
    Applicant: Integrated Device Technology, Inc.
    Inventors: Jae-Gyung Ahn, Young Woo
  • Patent number: 6846751
    Abstract: A rapid thermal nitridation (RTN) process produces a nitrogen concentration gradient in an oxynitride layer to compensate for transistor threshold voltage effects from a thickness gradient in the oxynitride layer. The nitrogen concentration gradient is selected to allow greater dopant penetration through thicker gate dielectrics in PMOS transistors formed using the oxynitride layer. Any increases in threshold voltage due to thicker gate dielectrics are counteracted by corresponding decreases in threshold voltage due to dopant penetration, allowing consistent threshold voltage values to be maintained for all PMOS transistors on a single wafer. The nitrogen concentration gradient can be introduced by regulating the flow of nitrous oxide during RTN processing to cause an accumulation of atomic oxygen to develop within the process chamber.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: January 25, 2005
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jae-Gyung Ahn, Young T. Woo
  • Publication number: 20040113182
    Abstract: A rapid thermal nitridation (RTN) process produces a nitrogen concentration gradient in an oxynitride layer to compensate for transistor threshold voltage effects from a thickness gradient in the oxynitride layer. The nitrogen concentration gradient is selected to allow greater dopant penetration through thicker gate dielectrics in PMOS transistors formed using the oxynitride layer. Any increases in threshold voltage due to thicker gate dielectrics are counteracted by corresponding decreases in threshold voltage due to dopant penetration, allowing consistent threshold voltage values to be maintained for all PMOS transistors on a single wafer. The nitrogen concentration gradient can be introduced by regulating the flow of nitrous oxide during RTN processing to cause an accumulation of atomic oxygen to develop within the process chamber.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Inventors: Jae-Gyung Ahn, Young T. Woo
  • Patent number: 6730572
    Abstract: A method of forming silicide, especially in a CMOS device in which polysilicon grains in a p-type gate are re-doped with n-type impurities such as As and the like at a critical implantation dose. This increases the grain size of the polysilicon, which also reduces sheet resistance by securing thermal stability in subsequent process steps thereof. The present invention generally includes forming an undoped polysilicon layer, doping the polysilicon layer with p-type impurity ions, doping the p-doped polysilicon layer with ions that increase the grain size of the polysilicon layer by being heated, forming a metal layer on the twice-doped polysilicon layer, and forming a silicide layer by reacting a portion of the twice-doped polysilicon layer with the metal layer.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: May 4, 2004
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventors: Key-Min Lee, Jae-Gyung Ahn
  • Publication number: 20030109116
    Abstract: A method of forming silicide, especially in a CMOS device in which polysilicon grains in a p-type gate are re-doped with n-type impurities such as As and the like at a critical implantation dose. This increases the grain size of the polysilicon, which also reduces sheet resistance by securing thermal stability in subsequent process steps thereof. The present invention generally includes forming an undoped polysilicon layer, doping the polysilicon layer with p-type impurity ions, doping the p-doped polysilicon layer with ions that increase the grain size of the polysilicon layer by being heated, forming a metal layer on the twice-doped polysilicon layer, and forming a silicide layer by reacting a portion of the twice-doped polysilicon layer with the metal layer.
    Type: Application
    Filed: January 21, 2003
    Publication date: June 12, 2003
    Applicant: Hynix Semiconductor Inc.
    Inventors: Key-Min Lee, Jae-Gyung Ahn
  • Patent number: 6528381
    Abstract: A method of forming silicide, especially in a CMOS device in which polysilicon grains in a p-type gate are re-doped with n-type impurities such as As and the like at a critical implantation dose. This increases the grain size of the polysilicon, which also reduces sheet resistance by securing thermal stability in subsequent process steps thereof. The present invention generally includes forming an undoped polysilicon layer, doping the polysilicon layer with p-type impurity ions, doping the p-doped polysilicon layer with ions that increase the grain size of the polysilicon layer by being heated, forming a metal layer on the twice-doped polysilicon layer, and forming a silicide layer by reacting a portion of the twice-doped polysilicon layer with the metal layer.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: March 4, 2003
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Key-Min Lee, Jae-Gyung Ahn
  • Patent number: 6518135
    Abstract: A method for forming a localized halo implant region, comprises: implanting a first dosage of ions of a first type toward a surface of a substrate having a gate electrode formed thereon, so as to form a lightly doped region adjacent to the gate electrode; forming a disposable spacer on a sidewall of the gate electrode; forming an elevated source/drain structure adjacent to the disposable spacer; implanting a second dosage of ions of the first type toward the surface of the substrate so as to form a heavily doped region adjacent to the disposable spacer; removing the disposable spacer; and tilt-angle implanting at least one dosage of ions of a second type toward a gap created by the disposable spacer having been removed so as to form a localized halo implant region in the substrate, preferably by utilizing shadow effects of the gate electrode and the elevated source/drain structure.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: February 11, 2003
    Assignee: Integrated Device Technology, Inc.
    Inventor: Jae-Gyung Ahn
  • Publication number: 20020047164
    Abstract: A device isolation structure and a method thereof including a semiconductor substrate wherein a field isolation region including a plurality of dummy active regions and an active region are defined, a plurality of trenches formed among the regions, a filling layer filled in the plurality of trenches, a gate insulation layer formed on the semiconductor substrate having the filling layer, and a second conduction layer formed on the gate insulation layer, is capable of preventing a dishing from being generated in etching by forming the plurality of dummy active regions in the field isolation region and basically preventing the wide trenches from being formed, minimizing a parasitic capacitance generated in the dummy active-gate insulation layer-gate insulation layer in the field isolation region, and simplifying an isolation process by using the dummy active pattern.
    Type: Application
    Filed: November 21, 2001
    Publication date: April 25, 2002
    Applicant: Hyundai Electronics Industries Co., Ltd.
    Inventor: Jae-Gyung Ahn