Patents by Inventor Jaime G. Moscoso

Jaime G. Moscoso has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180169635
    Abstract: A process for the production of para-xylene is presented. The process includes the isomerization of C8 aromatics to para-xylene utilizing a new catalyst. The new catalyst and designated as UZM-54 is represented by the empirical composition in the as synthesized and anhydrous basis expressed by the empirical formula of: Mmn+R1 r1p1+ R2 r2p2+ Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium and/or potassium, R1 and R2 are organoammonium cation and E is a framework element such as gallium, iron, boron, or indium. UZM-54 are characterized by unique x-ray diffraction patterns, high meso surface area, low Si/Al ratios.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 21, 2018
    Inventors: Gregory B. Kuzmanich, Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20180050327
    Abstract: Zeolitic materials with modified surface composition, crystal structure, crystal or particle size, and/or porosity, methods for making the same, and methods for converting oxygenates to olefins using the same are provided herein. In an exemplary embodiment, a method for reducing a surface silicon content of a silicon-containing zeolitic material is provided that includes providing a silicon-containing zeolitic material; and contacting the silicon-containing zeolitic material with a modifying solution comprising one or more of an amine, an alcoholamine, and an amino acid. In this embodiment, the contacting occurs under conditions suitable for the modifying solution to reduce a surface silicon content, increase the porosity, and/or decrease an average crystal or particle size of the silicon-containing zeolitic material.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 22, 2018
    Inventors: Nick J. Schoenfeldt, David Stickley, Jaime G. Moscoso, Deng-Yang Jan, Benjamin Daniel Yuhas
  • Patent number: 9890094
    Abstract: A process for the production of para-xylene is presented. The process includes the isomerization of C8 aromatics to para-xylene utilizing a new catalyst. The new catalyst and designated as UZM-54 is represented by the empirical composition in the as synthesized and anhydrous basis expressed by the empirical formula of: Mmn+R1 r1p1+R2 r2p2+Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium and/or potassium, R1 and R2 are organoammonium cation and E is a framework element such as gallium, iron, boron, or indium. UZM-54 are characterized by unique x-ray diffraction patterns, high meso surface area, low Si/Al ratios.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: February 13, 2018
    Assignee: UOP LLC
    Inventors: Gregory B. Kuzmanich, Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20170341065
    Abstract: A new family of highly charged crystalline microporous metallophosphate molecular sieves has been synthesized. These metallophosphates are represented by the empirical formula of: Rp+rA+mM2+xEyPOz where A is an alkali metal cation, R is at least one quaternary organoammonium cation, M is a divalent metal such as zinc and E is a trivalent framework element such as aluminum or gallium. This family of high charge density metallophosphate materials are among the first metalloalumino(gallo)phosphate-type molecular sieves to be stabilized by combinations of alkali and quaternary organoammonium cations, enabling unique compositions. This family of high charge density metallophosphate molecular sieves has catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 30, 2017
    Inventors: Gregory J. Lewis, Jaime G. Moscoso, Lisa M. Knight, Christopher P. Nicholas, Seungwan Seo, Junghwan Lee, Suk Bong Hong
  • Publication number: 20170341064
    Abstract: A family of highly charged crystalline microporous metallophosphate molecular sieves designated PST-19 has been synthesized. These high charge density metallophosphates are represented by the empirical formula of: Rp+rA+mM2+xEyPOz where A is an alkali metal such as potassium, R is an organoammonium cation such as tetraethylammonium, M is a divalent metal such as zinc and E is a trivalent framework element such as aluminum or gallium. The PST-19 family of materials are among the first MeAPO-type molecular sieves to be stabilized by combinations of alkali and quaternary ammonium cations, enabling unique compositions. The PST-19 family of molecular sieves has the SBS topology and catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 30, 2017
    Inventors: Gregory J. Lewis, Christopher P. Nicholas, Jaime G. Moscoso, Seungwan Seo, Junghwan Lee, Suk Bong Hong
  • Publication number: 20170297972
    Abstract: A process is presented for the production of light olefins. The process utilizes a SAPO-18 catalyst and is operated at an elevated pressure. The process generates higher concentrations of heavier olefins which can then be processed to generate light olefins. The processing of the heavier olefins can include metathesis reactions and olefin cracking processes.
    Type: Application
    Filed: June 8, 2017
    Publication date: October 19, 2017
    Inventors: Thulasidas Chellppannair, Nicholas J. Schoenfeldt, Andrea G. Bozzano, Wolfgang A. Spieker, Christopher D. DiGiulio, Gregory A. Funk, Jaime G. Moscoso
  • Patent number: 9688587
    Abstract: A process for the conversion of oxygenates to olefins is presented. The process utilizes a catalyst having a 2-dimensional morphology, and the catalyst is a pentasil zeolite. The process is an oxygenate to olefins conversion under typical temperatures and pressures, but provides for an increased propylene yield and a reduced ethylene yield.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: June 27, 2017
    Assignee: UOP LLC
    Inventors: Nicholas J. Schoenfeldt, Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20170166493
    Abstract: A process is presented for the conversion of oxygenates to olefins. The process utilizes a catalyst comprising a silicoaluminophosphate with an added basic metal oxide. The basic metal oxide modifies the selectivity to increase the yields of propylene and heavier olefins. The increase in heavier olefins are processed downstream to further increase propylene yields, and to generate a process stream comprising butylenes.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Inventors: Nicholas J. Schoenfeldt, Jaime G. Moscoso, Wolfgang A. Spieker, Thulasidas Chellppannair
  • Patent number: 9643897
    Abstract: A process for oxygenate conversion using a family of crystalline aluminosilicate zeolites that is a layered pentasil zeolite with a silica or fluorine modified surface. These zeolites are represented by the empirical formula: Mmn+Rrp+Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium or potassium, R can be a mixture of organoammonium cations and E is a framework element such as gallium, iron, boron, or indium. These zeolites are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out oxygenate conversion processes.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: May 9, 2017
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Nicholas J. Schoenfeldt, Jaime G. Moscoso
  • Publication number: 20160257624
    Abstract: A process for the conversion of oxygenates to olefins is presented. The process utilizes a catalyst having a 2-dimensional morphology, and the catalyst is a pentasil zeolite. The process is an oxygenate to olefins conversion under typical temperatures and pressures, but provides for an increased propylene yield and a reduced ethylene yield.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 8, 2016
    Inventors: Nicholas J. Schoenfeldt, Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20160257623
    Abstract: A process for oxygenate conversion using a family of crystalline aluminosilicate zeolites that is a layered pentasil zeolite with a silica or fluorine modified surface. These zeolites are represented by the empirical formula: Mmn+Rrp+Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium or potassium, R can be a mixture of organoammonium cations and E is a framework element such as gallium, iron, boron, or indium. These zeolites are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out oxygenate conversion processes.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 8, 2016
    Inventors: Deng-Yang Jan, Nicholas J. Schoenfeldt, Jaime G. Moscoso
  • Publication number: 20160257573
    Abstract: A family of crystalline aluminosilicate zeolites has been synthesized that is a layered pentasil zeolite. These zeolites are represented by the empirical formula: Mmn+Rrp+ Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium or strontium, R can be a mixture of organoammonium cations and E is a framework element such as gallium, iron, boron, or indium. These zeolites are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 8, 2016
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20160257631
    Abstract: A process for the production of para-xylene is presented. The process includes the isomerization of C8 aromatics to para-xylene utilizing a new catalyst. The new catalyst is a layer MFI zeolite and is represented by the empirical composition in the as synthesized and anhydrous basis expressed by the empirical formula of: Mmn+Rrp+AlSiyOz where M is at least one exchangeable cation selected from the group consisting of alkali and alkaline earth metals and R is at least one organoammonium cation.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 8, 2016
    Inventors: Gregory B. Kuzmanich, Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20160256857
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized and designated as UZM-54. These zeolites are represented by the empirical formula: Mmn+R1 r1p1+R2 r2p2+Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium or strontium, R1 and R2 are organoammonium cation and E is a framework element such as gallium, iron, boron, or indium. These zeolites are characterized by unique x-ray diffraction patterns, high meso-surface areas and low Si/Al2 ratios and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 8, 2016
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20160257632
    Abstract: A process for the production of para-xylene is presented. The process includes the isomerization of C8 aromatics to para-xylene utilizing a new catalyst. The new catalyst and designated as UZM-54 is represented by the empirical composition in the as synthesized and anhydrous basis expressed by the empirical formula of: Mmn+R1 r1p1+R2 r2p2+Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium and/or potassium, R1 and R2 are organoammonium cation and E is a framework element such as gallium, iron, boron, or indium. UZM-54 are characterized by unique x-ray diffraction patterns, high meso surface area, low Si/Al ratios.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 8, 2016
    Inventors: Gregory B. Kuzmanich, Jaime G. Moscoso, Deng-Yang Jan
  • Patent number: 9233856
    Abstract: A process for removing Hg2+ ions from a liquid stream is disclosed. The process involves contacting the liquid stream with specified UOP Zeolitic Materials. These molecular sieves are particularly effective in removing Hg2+ ions from aqueous streams even in the presence of Mg2+ and Ca2+ ions. The effective molecular sieves have an intermediate range of Si/Al ratios between about 2 and 20 and preferably between 3 and 10.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: January 12, 2016
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Paulina Jakubczak, Julio C. Marte, Susan C. Koster, Mark A. Miller, Lisa M. Knight, Jaime G. Moscoso
  • Patent number: 9211530
    Abstract: A porous crystalline silico-alumino-phosphate molecular sieve is described. The molecular sieve has a framework composition on an anhydrous and calcined basis expressed by an empirical formula (SixAlyPz)O2 where x is the mole fraction of Si and has a value from 0.001 to about 0.5, y is the mole fraction of Al and has a value of at least 0.01, z is the mole fraction of P has a value of at least 0.01, and x+y+z=1, where the molecular sieve is characterized as having a LTA framework with an average crystal size of less than 5 micrometers. Methods of making the molecular sieves are also described.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 15, 2015
    Assignee: UOP LLC
    Inventor: Jaime G. Moscoso
  • Publication number: 20150352538
    Abstract: Zeolitic materials with modified surface composition, crystal structure, crystal or particle size, and/or porosity, methods for making the same, and methods for converting oxygenates to olefins using the same are provided herein. In an exemplary embodiment, a method for reducing a surface silicon content of a silicon-containing zeolitic material is provided that includes providing a silicon-containing zeolitic material; and contacting the silicon-containing zeolitic material with a modifying solution comprising one or more of an amine, an alcoholamine, and an amino acid. In this embodiment, the contacting occurs under conditions suitable for the modifying solution to reduce a surface silicon content, increase the porosity, and/or decrease an average crystal or particle size of the silicon-containing zeolitic material.
    Type: Application
    Filed: October 21, 2014
    Publication date: December 10, 2015
    Inventors: Nick J. Schoenfeldt, David Stickley, Jaime G. Moscoso, Deng-Yang Jan, Benjamin Daniel Yuhas
  • Patent number: 9133037
    Abstract: Embodiments of a process for recovery of nano zeolites from an aqueous suspension are provided. The process comprises the steps of applying centrifugal force to the aqueous suspension to separate a supernatant phase from a solid phase that comprises the nano zeolites and residuals. The solid phase is contacted with a solution effective to dissolve or digest the residuals and to agglomerate the nano zeolites forming agglomerated nano zeolites. The solution is filtered to recover the agglomerated nano zeolites.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: September 15, 2015
    Assignee: UOP LLC
    Inventor: Jaime G. Moscoso
  • Patent number: 9126184
    Abstract: A process is disclosed using a new catalyst for use in the alkylation of benzene with a substantially linear olefin. The catalyst allows for cation exchange with a rare earth element to increase the alkylation of benzene, while reducing the amount of isomerization of the alkyl group. This is important for increasing the quality of the alkylbenzene by increasing the linearity of the alkylbenzene.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: September 8, 2015
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Mark G. Riley, Stephen W. Sohn, Jaime G. Moscoso, Raelynn M. Miller