Patents by Inventor James A. Bell

James A. Bell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10794745
    Abstract: A vibratory meter (5), and methods of manufacturing the same are provided. The vibratory meter includes a pickoff (170l), a driver (180), and a flow tube (400) comprising a tube perimeter wall with: a first substantially planar section (406a), a second substantially planar section (406b) coupled to the first substantially planar section to form a first angle ?1 (404), and a first curved section (406c).
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: October 6, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Publication number: 20200249061
    Abstract: A multichannel flow tube (300) for a vibratory meter (5), and a method of manufacturing the multichannel flow tube are provided. The multichannel flow tube comprises a tube perimeter wall (304), a first channel division (302b), and a first support structure (308a). The first channel division is enclosed within and coupled to the tube perimeter wall, forming a first channel (306b) and a second channel (306c). The first support structure is coupled to the tube perimeter wall and the first channel division.
    Type: Application
    Filed: August 23, 2017
    Publication date: August 6, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Publication number: 20200240823
    Abstract: Vibratory meters (5), and methods for their use measuring a fluid are provided. Each vibratory meter includes a multichannel flow tube (300) comprising two or more fluid channels (302), a pickoff (170), a driver (180), and meter electronics (20) configured to apply a drive signal to the driver at a drive frequency, and measure a deflection of the multichannel flow tube with the pickoff. In examples, at least one fluid channel has an effective diameter that is related to kinematic viscosity, inverse Stokes number, and drive frequency; velocity of sound and drive velocity; or the length of the flow tube. In further examples, the driver may apply a drive signal to the driver having a drive frequency proportional to the kinematic viscosity, inverse Stokes number, and effective diameter; or velocity of sound and effective diameter.
    Type: Application
    Filed: August 23, 2017
    Publication date: July 30, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Patent number: 10718649
    Abstract: A vibratory meter (5) including a multi-channel flow tube (130) is provided. The vibratory meter (5) includes a meter electronics (20) and a meter assembly (10) communicatively coupled to the meter electronics (20). The meter assembly (10) includes the multi-channel flow tube (130, 330, 430, 530) comprising two or more fluid channels (132, 332, 432, 532) surrounded by a tube wall (134, 334, 434, 534). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) comprise a single integral structure. A driver (180) is coupled to the multi-channel flow tube (130, 330, 430, 530). The driver (180) is configured to vibrate the multi-channel flow tube (130, 330, 430, 530). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) are configured to deform in the same direction as the single integral structure in response to a drive signal applied to the driver (180).
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 21, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Joel Weinstein, Martin Andrew Schlosser, Frederick Scott Schollenberger
  • Patent number: 10717093
    Abstract: An irrigation sprinkler can include a reversing mechanism configured to transition the nozzle turret of the irrigation sprinkler between a forward direction of rotation and a reverse direction of rotation. The reversing mechanism can include shifting frame having an input gear and at least one output gear. The at least one output gear can be mounted on an axle of rotation which permits lateral movement of the at least one output gear between a power transmitting position, wherein rotational power from a gear reduction is transferred to the nozzle turret, and a disengaged position wherein rotational power from the gear reduction is not transferred to the nozzle turret.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 21, 2020
    Assignee: Hunter Industries, Inc.
    Inventor: James A. Bell
  • Publication number: 20200191631
    Abstract: A first and second vibratory meter (5), and methods of manufacturing the same are provided. The first vibratory meter includes a pickoff (170l), a driver (180), and a flow tube (400) comprising a tube perimeter wall with: a first substantially planar section (406a), a second substantially planar section (406b) coupled to the first substantially planar section to form a first angle ??1#191 (404), and a first curved section (406c). The second vibratory meter includes a pickoff, a driver, and a flow tube (700) comprising a tube perimeter wall with: a first substantially planar section (706a), a second substantially planar section (706b) coupled to the first substantially planar section to form a first angle ??1#191 (704), a third substantially planar section (706c), a fourth substantially planar section (706d), and a fifth substantially planar section (706e).
    Type: Application
    Filed: August 23, 2017
    Publication date: June 18, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Publication number: 20200173829
    Abstract: Vibratory meters (5), and methods for their use measuring a fluid are provided. Each vibratory meter includes a multichannel flow tube (300) comprising two or more fluid channels (302), a pickoff (170), a driver (180), and meter electronics (20) configured to apply a drive signal to the driver at a drive frequency ?, and measure a deflection of the multichannel flow tube with the pickoff. In examples, at least one fluid channel has an effective diameter that is related to velocity of sound and drive velocity. In further examples, the driver may apply a drive signal to the driver having a drive frequency proportional to the velocity of sound and effective diameter.
    Type: Application
    Filed: February 6, 2020
    Publication date: June 4, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel Weinstein, Mitalee Nayan Desai, Clinton R. Griffin
  • Publication number: 20200173830
    Abstract: A vibratory meter (5), and methods of manufacturing the same are provided. The vibratory meter includes a pickoff, a driver, and a flow tube (700) comprising a tube perimeter wall with: a first substantially planar section (706a), a second substantially planar section (706b) coupled to the first substantially planar section to form a first angle ?1 (704), a third substantially planar section (706c), a fourth substantially planar section (706d), and a fifth substantially planar section (706e).
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Publication number: 20200173827
    Abstract: A flow conduit assembly (300), a method for making the same, a brace bar (304), and a vibrating flowmeter including the flow conduit assembly are provided. The flow conduit assembly includes a first flow tube (302), a second flow tube (303), and a first brace bar (304) coupled to the first flow tube, wherein the first brace bar does not enclose the first flow tube and the second flow tube.
    Type: Application
    Filed: August 29, 2017
    Publication date: June 4, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Publication number: 20200173828
    Abstract: Vibratory meters (5), and methods for their use measuring a fluid are provided. Each vibratory meter includes a multichannel flow tube (300) comprising two or more fluid channels (302), a pickoff (170), a driver (180), and meter electronics (20) configured to apply a drive signal to the driver at a drive frequency ?, and measure a deflection of the multichannel flow tube with the pickoff. In examples, at least one fluid channel has an effective diameter that is related to kinematic viscosity, inverse Stokes number, and drive frequency. In further examples, the driver may apply a drive signal to the driver having a drive frequency proportional to the kinematic viscosity, inverse Stokes number, and effective diameter.
    Type: Application
    Filed: February 6, 2020
    Publication date: June 4, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Mitalee Nayan DESAI, Clinton R. GRIFFIN
  • Publication number: 20200166395
    Abstract: A system (800) for minimizing a crest in a multi-tone drive signal in a vibratory meter (5) is provided. The system (800) includes a drive signal generator (810) configured to generate the multi-tone drive signal for the vibratory meter (5) and a drive signal detector (820). The drive signal detector (820) is configured to receive the multi-tone drive signal, determine a first maximum amplitude of the multi-tone drive signal having a component at a first phase, determine a second maximum amplitude of the multi-tone drive signal having the component at a second phase, and compare the first maximum amplitude and the second maximum amplitude.
    Type: Application
    Filed: June 14, 2017
    Publication date: May 28, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Timothy J. CUNNINGHAM, Matthew Joseph RENSING, Mark James BELL
  • Publication number: 20200092626
    Abstract: A wearable device for attachment to the ear of a user that includes a magnetic attachment system. The wearable device includes an earpiece including a speaker and a body section including a hook for attachment about the ear. First and second magnetic elements are provided on the earpiece and body. The earpiece is movable relative to the body section and the earpiece and body section are configured so that when the body section is hooked about the ear the magnetic elements are magnetically attracted to each other through the ear to retain the device in place.
    Type: Application
    Filed: March 19, 2018
    Publication date: March 19, 2020
    Applicant: MEDIA DEVICE LIMITED
    Inventor: James Bell-Booth
  • Publication number: 20200064244
    Abstract: A vibratory cavity density meter (100-300) is provided. The vibratory cavity density meter (100-300) includes a pipe (110-310) extending from a first end (110a-310a) to a second end (110b-310b). The first end (110a-310a) includes an aperture (114-314) configured to receive a material from a container (10) and the second end (110b-310b) is self-enclosed so as to contain the material in the pipe (110-310). The vibratory cavity density meter (100-300) also includes at least one transducer (118, 218) coupled to the pipe (110-310), the at least one transducer (118, 218) configured to one of induce and sense a vibration in the pipe (110-310) to measure a property of the material.
    Type: Application
    Filed: June 13, 2016
    Publication date: February 27, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Andrew S. KRAVITZ, Martin Schlosser, Mark James Bell
  • Patent number: 10466087
    Abstract: A method for calculating a fluid parameter of a fluid flowing through a vibratory flow meter is provided. The method comprises vibrating the flow meter at one or more frequencies and receiving a vibrational response. The method further comprises generating a first fluid property and generating at least a second fluid property. The method further comprises calculating a fluid parameter based on the first fluid property and the at least second fluid property.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: November 5, 2019
    Assignee: Micron Motion, Inc.
    Inventors: Joel Weinstein, Mark James Bell, Andrew Timothy Patten
  • Patent number: 10416845
    Abstract: Systems and methods for presenting content that depicts one or more stories are provided. Content that depicts one or more stories is received from a first client device. The content that depicts the one or more stories is grouped into an edition being used to represent the one or more stories. A discovery page that enables selection of the edition is generated. Presentation of the discovery page is caused on a second client device.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: September 17, 2019
    Assignee: Snap Inc.
    Inventors: Nicholas Richard Allen, Nicholas James Bell, Andrew Cooper, Chamal Samaranayake, William Wu
  • Publication number: 20190248218
    Abstract: An accessory door panel for a utility vehicle provides a fabric door panel which can be quickly deployed and installed within a utility vehicle for emergency weather use where the utility vehicle has had the factory doors removed at the discretion of the driver. The fabric door panel is fitted to the contours of the door opening and may be stored from an overhead horizontal support member over the door or alternatively stored within a container mounted to the floor at the bottom of the door opening, the door being made of a flexible material that can be stretched across the door opening and anchored at several points along the door frame by independent anchors.
    Type: Application
    Filed: August 28, 2018
    Publication date: August 15, 2019
    Inventors: James Bell, Jakob Andrew Bell
  • Patent number: 10330429
    Abstract: A bowstring which is attached to a recurve or other long bow providing a section having an abrasive circular margin used to cut wood or other substance in an emergency replacing the bowstring of the bow utilized for shooting an arrow.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: June 25, 2019
    Inventor: James Bell
  • Publication number: 20190128719
    Abstract: A vibratory meter (5) including a multi-channel flow tube (130) is provided. The vibratory meter (5) includes a meter electronics (20) and a meter assembly (10) communicatively coupled to the meter electronics (20). The meter assembly (10) includes the multi-channel flow tube (130, 330, 430, 530) comprising two or more fluid channels (132, 332, 432, 532) surrounded by a tube wall (134, 334, 434, 534). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) comprise a single integral structure. A driver (180) is coupled to the multi-channel flow tube (130, 330, 430, 530). The driver (180) is configured to vibrate the multi-channel flow tube (130, 330, 430, 530). The two or more fluid channels (132, 332, 432, 532) and tube wall (134, 334, 434, 534) are configured to deform in the same direction as the single integral structure in response to a drive signal applied to the driver (180).
    Type: Application
    Filed: May 16, 2016
    Publication date: May 2, 2019
    Applicant: Micro Motion, Inc.
    Inventors: Mark James BELL, Joel WEINSTEIN, Martin Andrew SCHLOSSER, Frederick Scott SCHOLLENBERGER
  • Patent number: 10133705
    Abstract: Systems and methods for presenting content that depicts one or more stories are provided. Content that depicts one or more stories is received from a first client device. The content that depicts the one or more stories is grouped into an edition being used to represent the one or more stories. A discovery page that enables selection of the edition is generated. Presentation of the discovery page is caused on a second client device.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: November 20, 2018
    Assignee: Snap Inc.
    Inventors: Nicholas Richard Allen, Nicholas James Bell, Andrew Cooper, Chamal Samaranayake, William Wu
  • Patent number: D858142
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: September 3, 2019
    Assignee: BELL FAMILY ENTERPRISES, LLC
    Inventors: J. Miguel Marrero, Warrick James Bell, Jared James Bell