Patents by Inventor James Arthur Register III

James Arthur Register III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8750662
    Abstract: A fiber optic cable includes a polymeric jacket defining an outer periphery and a cavity interior thereto, an optical fiber positioned within the cavity, and first and second longitudinal strength elements fully embedded in the jacket on opposite sides of the cavity from one another, where the strength elements define a bend axis of the cable passing there through that is orthogonal to the length of the cable, and the bend axis and the length of the cavity define a preferential plane for bending. The cable resists bending about a third axis that is orthogonal to the length of the cable and the bend axis, where the third axis and the length of the cable define a non-preferential plane for bending. The difference in flexural rigidity between the preferential and non-preferential planes limits formation of spontaneous knots in a coil of the cable while providing flexibility for ease of handling.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: June 10, 2014
    Assignee: Corning Optical Communications LLC
    Inventors: Mark Alan Bradley, William Welch McCollough, James Arthur Register, III
  • Publication number: 20140153885
    Abstract: A fiber optic cable includes a polymeric jacket defining an outer periphery and a cavity interior thereto, an optical fiber positioned within the cavity, and first and second longitudinal strength elements fully embedded in the jacket on opposite sides of the cavity from one another, where the strength elements define a bend axis of the cable passing there through that is orthogonal to the length of the cable, and the bend axis and the length of the cavity define a preferential plane for bending. The cable resists bending about a third axis that is orthogonal to the length of the cable and the bend axis, where the third axis and the length of the cable define a non-preferential plane for bending. The difference in flexural rigidity between the preferential and non-preferential planes limits formation of spontaneous knots in a coil of the cable while providing flexibility for ease of handling.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Mark Alan Bradley, William Welch McCollough, James Arthur Register, III
  • Publication number: 20140153886
    Abstract: A cable includes a channel with an aspect ratio that houses optical fibers therein. The cable includes first and second stranded conductors on opposing sides of the channel. The channel is arranged with respect to the stranded conductors so that the fibers assume low strain positions in the channel when the cable is bent.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicant: Corning Optical Communications LLC
    Inventors: James Arthur Register, III, Reginald Roberts, Randall Dwaine Tuttle
  • Patent number: 8724947
    Abstract: Cables have armor including a polymer, the armor having an armor profile that resembles conventional metal armored cable. The armor provides additional crush and impact resistance for the optical fibers and/or fiber optic assembly therein. The armored cables recover substantially from deformation caused by crush loads. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: May 13, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Gregory Blake Bohler, Julian Latelle Greenwood, III, Keith Aaron Greer, Wesley Brian Nicholson, James Arthur Register, III, Kimberly Dawn Slan
  • Patent number: 8676012
    Abstract: A fiber optic cable includes a polymeric jacket defining an outer periphery and a cavity interior thereto, an optical fiber positioned within the cavity, and first and second longitudinal strength elements fully embedded in the jacket on opposite sides of the cavity from one another, where the strength elements define a bend axis of the cable passing there through that is orthogonal to the length of the cable, and the bend axis and the length of the cavity define a preferential plane for bending. The cable resists bending about a third axis that is orthogonal to the length of the cable and the bend axis, where the third axis and the length of the cable define a non-preferential plane for bending. The difference in flexural rigidity between the preferential and non-preferential planes limits formation of spontaneous knots in a coil of the cable while providing flexibility for ease of handling.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: March 18, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Mark Alan Bradley, William Welch McCollough, James Arthur Register, III
  • Publication number: 20140064681
    Abstract: A hybrid cable includes a cable jacket, elements stranded within the cable jacket, and armor between the elements and the cable jacket. The armor is configured to provide electro-magnetic interference shielding and grounding as well as crush and impact resistance for the hybrid cable. The elements include electrical-conductor elements and one or more fiber-optic elements. The electrical-conductor elements include a metallic conductor jacketed in a polymer, where the electrical-conductor elements are each within the range of 10 American wire gauge (AWG) to 1\0 AWG. The one or more fiber-optic elements include optical fibers within a polymeric tube. At least six of the elements are stranded side-by-side with one another around a central element, which is one of the electrical-conductor elements or one of the one or more fiber-optic elements.
    Type: Application
    Filed: February 27, 2013
    Publication date: March 6, 2014
    Inventors: James Arthur Register, III, David Henry Smith
  • Publication number: 20140064680
    Abstract: A hybrid cable includes a cable jacket and elements stranded within the cable jacket. The elements include greater-capacity electrical-conductor elements and sub-assembly elements. The greater-capacity electrical-conductor elements include a metallic conductor jacketed in a polymer, each within the range of 10 American wire gauge (AWG) to 1\0 AWG. The sub-assembly elements include stranded combinations of sub-elements, where the sub-elements include at least one of polymeric tubes comprising optical fibers and lesser-capacity electrical-conductor elements, each having a lesser current-carrying capacity than 10 AWG. The sub-elements are stranded with respect to one another and additionally stranded as part of sub-assembly elements with respect to other elements.
    Type: Application
    Filed: February 6, 2013
    Publication date: March 6, 2014
    Inventors: James Arthur Register, III, David Henry Smith
  • Publication number: 20140064679
    Abstract: Hybrid fiber optic cables including one or more electrical coaxial subassembly allowing for fiber movement to reduce attenuation during bending are disclosed. Related connectorized cables and systems are also disclosed. The hybrid fiber optic cables include both one or more coaxial subassembly and optical fibers to provide both optical and electrical connectivity as part of a connectorized system. Use of one or more coaxial subassembly reduces impedance variations and lowers cost. Each coaxial sub-assembly also includes multiple electrical conductors to increase electrical connectivity capacity (e.g., power and signals) of the hybrid cable, as needed or desired. Further, the hybrid cable may include a channel with optical fiber(s) of the hybrid cable disposed therein, free of attachment to the channel. The channel allows the optical fibers to move relative to the cable jacket and control bend radius to reduce optical attenuation when the hybrid fiber optic cable is bent.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Inventors: James Arthur Register, III, William Welch McCollough
  • Publication number: 20140010505
    Abstract: A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 3 mm?DO?5 mm.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 9, 2014
    Applicant: Corning Cable Systems LLC
    Inventor: James Arthur Register, III
  • Publication number: 20130330086
    Abstract: Distributed antenna systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote antenna units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: Coming Cable Systems LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Publication number: 20130287348
    Abstract: A hybrid cable includes a guide in the center of the cable, elements stranded side-by-side with one another around the guide, fiber optic elements including optical fibers, a metal armor, and a polymeric jacket of the cable surrounding the metal armor. The elements stranded side-by-side with one another around the guide include electrical-conductor elements, which themselves include stranded metal wires insulated in a jacket of the electrical-conductor elements. The electrical-conductor elements are round and have the same diameter as one another. Furthermore, the electrical-conductor elements are each within the range of 10 American wire gauge (AWG) to 1\0 AWG. The fiber optic elements may be included in or integrated with the group of elements stranded side-by-side with one another around the guide. The metal armor surrounds the elements stranded side-by-side with one another around the guide, and serves as a grounding conductor and an electro-magnetic interference shield.
    Type: Application
    Filed: March 6, 2013
    Publication date: October 31, 2013
    Inventors: James Arthur Register, III, David Henry Smith
  • Patent number: 8565563
    Abstract: A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 3 mm?DO?5 mm.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 22, 2013
    Assignee: Corning Cable Systems LLC
    Inventor: James Arthur Register, III
  • Publication number: 20130259435
    Abstract: Cables have armor including a polymer, the armor having an armor profile that resembles conventional metal armored cable. The armor provides additional crush and impact resistance for the optical fibers and/or fiber optic assembly therein. The armored cables recover substantially from deformation caused by crush loads. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space.
    Type: Application
    Filed: May 23, 2013
    Publication date: October 3, 2013
    Inventors: Gregory Blake Bohler, Julian Latelle Greenwood, III, Keith Aaron Greer, Wesley Brian Nicholson, James Arthur Register, III, Kimberly Dawn Slan
  • Publication number: 20130188916
    Abstract: A fiber optic cable includes a polymeric jacket defining an outer periphery and a cavity interior thereto, an optical fiber positioned within the cavity, and first and second longitudinal strength elements fully embedded in the jacket on opposite sides of the cavity from one another, where the strength elements define a bend axis of the cable passing there through that is orthogonal to the length of the cable, and the bend axis and the length of the cavity define a preferential plane for bending. The cable resists bending about a third axis that is orthogonal to the length of the cable and the bend axis, where the third axis and the length of the cable define a non-preferential plane for bending. The difference in flexural rigidity between the preferential and non-preferential planes limits formation of spontaneous knots in a coil of the cable while providing flexibility for ease of handling.
    Type: Application
    Filed: July 26, 2012
    Publication date: July 25, 2013
    Inventors: Mark Alan Bradley, William Welch McCollough, James Arthur Register, III
  • Patent number: 8494328
    Abstract: Armored fiber optic assemblies and methods are disclosed that include a dielectric armor and at least one bend-resistant multimode optical fiber. The dielectric armor has an armor profile, thereby resembling conventional metal armored cable to the craft. The dielectric armor provides additional crush and impact resistance and the like for the optical fibers and/or fiber optic assembly therein. The dielectric armor is advantageous to the craft since it provides the desired mechanical performance without requiring the time and expense of grounding like conventional metal armored cables. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space. The use of at least one bend-resistant multimode optical fiber allows for improved bend performance for the armored fiber optic assemblies, allowing for tighter cable routing as compared to armored fiber optic assemblies having conventional multimode optical fiber.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: July 23, 2013
    Assignee: Corning Cable Systems LLC
    Inventor: James Arthur Register, III
  • Publication number: 20130071073
    Abstract: A crush-resistant fiber optic cable is disclosed, wherein the cable includes a plurality of optical fibers. The fibers are generally arranged longitudinally about a central axis, with no strength member arranged along the central axis. A tensile-strength layer surrounds the plurality of optical fibers. A protective cover surrounds the tensile-strength layer and has an outside diameter DO in the range 3 mm?DO?5 mm.
    Type: Application
    Filed: November 14, 2012
    Publication date: March 21, 2013
    Inventor: James Arthur Register III
  • Publication number: 20130071075
    Abstract: Armored fiber optic assemblies and methods are disclosed that include a dielectric armor and at least one bend-resistant multimode optical fiber. The dielectric armor has an armor profile, thereby resembling conventional metal armored cable to the craft. The dielectric armor provides additional crush and impact resistance and the like for the optical fibers and/or fiber optic assembly therein. The dielectric armor is advantageous to the craft since it provides the desired mechanical performance without requiring the time and expense of grounding like conventional metal armored cables. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space. The use of at least one bend-resistant multimode optical fiber allows for improved bend performance for the armored fiber optic assemblies, allowing for tighter cable routing as compared to armored fiber optic assemblies having conventional multimode optical fiber.
    Type: Application
    Filed: November 9, 2012
    Publication date: March 21, 2013
    Inventor: James Arthur Register III
  • Publication number: 20130051741
    Abstract: Micromodule cables include subunit, tether cables having both electrical conductors and optical fibers. The subunits can be stranded within the micromodule cable jacket so that the subunits can be accessed from the micromodule cable at various axial locations along the cable without using excessive force. Each subunit can include two electrical conductors so that more power can be provided to electrical devices connected to the subunit.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 28, 2013
    Inventors: James Arthur Register III, Michael P. O'Day