Patents by Inventor James Burr Hecht

James Burr Hecht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9779868
    Abstract: A compact impedance transformer is disclosed having a first dielectric substrate, a first planar conductor disposed on a top surface of the first dielectric substrate in a loop, a second planar conductor disposed on a bottom surface of the first dielectric substrate in a second loop, wherein the first planar conductor and the second planar conductor are substantially identical and in stacked alignment. A second dielectric substrate has a third planar conductor disposed on a top surface of the second dielectric substrate in a third loop, and a fourth planar conductor disposed on a bottom surface of the second dielectric substrate in a fourth loop, wherein the third planar conductor and the fourth planar conductor are substantially identical and in stacked alignment. An interconnect structure between terminals of the first planar conductor, the second planar conductor, the third planar conductor, and the fourth planar conductor provide impedance transformations.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: October 3, 2017
    Assignee: Qorvo US, Inc.
    Inventor: James Burr Hecht
  • Publication number: 20150318107
    Abstract: A compact impedance transformer is disclosed having a first dielectric substrate, a first planar conductor disposed on a top surface of the first dielectric substrate in a loop, a second planar conductor disposed on a bottom surface of the first dielectric substrate in a second loop, wherein the first planar conductor and the second planar conductor are substantially identical and in stacked alignment. A second dielectric substrate has a third planar conductor disposed on a top surface of the second dielectric substrate in a third loop, and a fourth planar conductor disposed on a bottom surface of the second dielectric substrate in a fourth loop, wherein the third planar conductor and the fourth planar conductor are substantially identical and in stacked alignment. An interconnect structure between terminals of the first planar conductor, the second planar conductor, the third planar conductor, and the fourth planar conductor provide impedance transformations.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 5, 2015
    Inventor: James Burr Hecht
  • Patent number: 7388433
    Abstract: The present invention is a quadrature RF amplifier including an in-phase amplifier leg and a quadrature-phase amplifier leg. The nominal gain of the in-phase amplifier leg is substantially different from the nominal gain of the quadrature-phase amplifier leg to compensate for gain imbalances introduced by the ground currents of both amplifier legs sharing a common ground lead. The gain imbalances are as a result of voltages developed across the inductance of the common ground lead. Since it is possible to completely compensate for the gain imbalances, reducing the inductance of the common ground lead may be unnecessary.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: June 17, 2008
    Assignee: RF Micro Devices, Inc.
    Inventor: James Burr Hecht
  • Patent number: 7190935
    Abstract: The present invention provides an efficient way to detect the transmit power provided by an amplifier. A power sense signal indicative of the transmit power of the amplifier is generated and fed back to a control system, which will react accordingly to control input signal levels, bias, gain, or a combination thereof for the amplifier in traditional fashion to control transmit power. Detection circuitry representing a scaled version of the amplifier receives the radio frequency (RF) drive in parallel with the amplifier to provide a scaled output signal. The scaled output signal is rectified and filtered to generate the power sense signal.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: March 13, 2007
    Assignee: RF Micro Devices, Inc.
    Inventor: James Burr Hecht
  • Publication number: 20030054778
    Abstract: The present invention provides an efficient way to detect the transmit power provided by an amplifier. A power sense signal indicative of the transmit power of the amplifier is generated and fed back to a control system, which will react accordingly to control input signal levels, bias, gain, or a combination thereof for the amplifier in traditional fashion to control transmit power. Detection circuitry representing a scaled version of the amplifier receives the radio frequency (RF) drive in parallel with the amplifier to provide a scaled output signal. The scaled output signal is rectified and filtered to generate the power sense signal.
    Type: Application
    Filed: September 14, 2001
    Publication date: March 20, 2003
    Inventor: James Burr Hecht
  • Publication number: 20010019290
    Abstract: The present invention improves the stability and enhances the gain of amplifiers, particularly transistor amplifiers, by using mutual inductive coupling to partially cancel feedback current. Inductors at the input and output of an amplifier are positioned so that a mutual inductance is created between the two inductors. The mutual inductance is used to cancel the inherent capacitive feedback of transistor amplifiers. The use of mutually coupled inductors allows a large value of effective inductance to be obtained by using relatively small inductors. The use of mutually coupled inductors also avoids the problem of low-frequency instability.
    Type: Application
    Filed: February 14, 2001
    Publication date: September 6, 2001
    Inventor: James Burr Hecht
  • Patent number: 6211738
    Abstract: The present invention improves the stability and enhances the gain of amplifiers, particularly transistor amplifiers, by using mutual inductive coupling to partially cancel feedback current. Inductors at the input and output of an amplifier are positioned so that a mutual inductance is created between the two inductors. The mutual inductance is used to cancel the inherent capacitive feedback of transistor amplifiers. The use of mutually coupled inductors allows a large value of effective inductance to be obtained by using relatively small inductors. The use of mutually coupled inductors also avoids the problem of low-frequency instability.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: April 3, 2001
    Assignee: Conexant Systems, Inc.
    Inventor: James Burr Hecht