Patents by Inventor James Craig Smith

James Craig Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964989
    Abstract: Compounds that inhibit KRas G12D. In particular, compounds that inhibit the activity of KRas G12D, pharmaceutical compositions comprising the compounds and methods of use therefor, and in particular, methods of treating cancer. The compounds have a general structure represented by Formula (I): or a pharmaceutically acceptable salt thereof.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: April 23, 2024
    Assignees: Mirati Therapeutics, Inc., Array BioPharma Inc.
    Inventors: Xiaolun Wang, Aaron Craig Burns, James Gail Christensen, John Michael Ketcham, John David Lawson, Matthew Arnold Marx, Christopher Ronald Smith, Shelley Allen, James F. Blake, Mark Joseph Chicarelli, Joshua Ryan Dahlke, Donghua Dai, Jay Bradford Fell, John Peter Fischer, Macedonio J. Mejia, Brad Newhouse, Phong Nguyen, Jacob Matthew O'Leary, Spencer Pajk, Martha E. Rodriguez, Pavel Savechenkov, Tony P. Tang, Guy P.A. Vigers, Qian Zhao, Dean Russell Kahn, John Gaudino, Michael Christopher Hilton
  • Patent number: 10723961
    Abstract: A system for producing American Petroleum Institute Standards Group III Base Stock from vacuum gas oil, by injecting hydrogen, heating, partially saturating the vacuum gas oil through a plurality of hydrogen reactors connected in series with a liquid hourly space velocity (LHSV)?1 of from 0.5 to 2.5, forming a saturated heated base oil, and coproduct. The system fractionates the saturated heated base oil to while simultaneously refluxing a cooled fuel oil fraction forming an American Petroleum Institute Standards Group III Base Stock with less than 0.03% sulfur, with greater than 90% saturates and a viscosity index greater than 120 as defined by ASTM D-2270, a viscosity from 2 to 10 centistokes as defined by ASTM D-445 a boiling range from 600 degrees F. to 1050 degrees F., and a cold crank viscosity (CCS) between 1200 and 5000 centipoise at ?25 degrees C. and as defined by ASTM D-5293.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: July 28, 2020
    Assignee: VERTEX ENERGY
    Inventors: Benjamin Cowart, David Peel, Frank Lappin, James Craig Smith
  • Publication number: 20190367821
    Abstract: A system for producing American Petroleum Institute Standards Group III Base Stock from vacuum gas oil, by injecting hydrogen, heating, partially saturating the vacuum gas oil through a plurality of hydrogen reactors connected in series with a liquid hourly space velocity (LHSV)?1 of from 0.5 to 2.5, forming a saturated heated base oil, and coproduct. The system fractionates the saturated heated base oil to while simultaneously refluxing a cooled fuel oil fraction forming an American Petroleum Institute Standards Group III Base Stock with less than 0.03% sulfur, with greater than 90% saturates and a viscosity index greater than 120 as defined by ASTM D-2270, a viscosity from 2 to 10 centistokes as defined by ASTM D-445 a boiling range from 600 degrees F. to 1050 degrees F., and a cold crank viscosity (CCS) between 1200 and 5000 centipoise at ?25 degrees C. and as defined by ASTM D-5293.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Benjamin Cowart, David Peel, Frank Lappin, James Craig Smith
  • Patent number: 10421916
    Abstract: A system for producing an American Petroleum Institute Standards Group III Base Stock from vacuum gas oil, by injecting hydrogen, heating, saturating the mixture through hydrogen reactors connected in series with a liquid hourly space velocity (LHSV)?1 of from 0.5 to 2.5, forming a saturated heated base oil, and coproduct. The system fractionates the saturated heated base oil to while simultaneously refluxing a cooled fuel oil fraction forming an American Petroleum Institute Standards Group III Base Stock with less than 0.03% sulfur, with greater than 90% saturates and a viscosity index greater than 120 as defined by ASTM D-2270, a viscosity from 2 to 10 centistokes as defined by ASTM D-445 a boiling range from 600 degrees F. to 1050 degrees F., and a cold crank viscosity (CCS) between 1200 and 5000 centipoise at ?25 degrees C. and as defined by ASTM D-5293.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 24, 2019
    Assignee: Vertex Energy
    Inventors: Benjamin Cowart, David Peel, Frank Lappin, James Craig Smith
  • Publication number: 20190161693
    Abstract: A method for producing an American Petroleum Institute Standards Group III Base Stock from vacuum gas oil, by injecting hydrogen, heating, saturating the mixture through hydrogen reactors connected in series with a liquid hourly space velocity (LHSV)?1 from 0.5 to 2.5, forming a saturated heated base oil, and coproduct. The method fractionates the saturated heated base oil while simultaneously refluxing a cooled light oil fraction forming an American Petroleum Institute Standards Group III Base Stock with less than 0.03% sulfur, with greater than 90% saturates and a viscosity index greater than 120 as defined by ASTM D-2270, a viscosity from 2 to 10 centistokes as defined by ASTM D-445 a boiling point range from 600 degrees F. to 1050 degrees F. as defined by ASTM D-86, and a cold crank viscosity (CCS) between 1200 and 5000 centipoise at minus 25 degrees C. and as defined by ASTM D-5293.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Inventors: BENJAMIN COWART, David Peel, Frank Lappin, James Craig Smith
  • Publication number: 20190161690
    Abstract: A system for producing an American Petroleum Institute Standards Group III Base Stock from vacuum gas oil, by injecting hydrogen, heating, saturating the mixture through hydrogen reactors connected in series with a liquid hourly space velocity (LHSV)?1 of from 0.5 to 2.5, forming a saturated heated base oil, and coproduct. The system fractionates the saturated heated base oil to while simultaneously refluxing a cooled fuel oil fraction forming an American Petroleum Institute Standards Group III Base Stock with less than 0.03% sulfur, with greater than 90% saturates and a viscosity index greater than 120 as defined by ASTM D-2270, a viscosity from 2 to 10 centistokes as defined by ASTM D-445 a boiling range from 600 degrees F. to 1050 degrees F., and a cold crank viscosity (CCS) between 1200 and 5000 centipoise at ?25 degrees C. and as defined by ASTM D-5293.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Inventors: Benjamin Cowart, David Peel, Frank Lappin, James Craig Smith
  • Patent number: 10287515
    Abstract: A method for producing an American Petroleum Institute Standards Group III Base Stock from vacuum gas oil, by injecting hydrogen, heating, saturating the mixture through hydrogen reactors connected in series with a liquid hourly space velocity (LHSV)?1 from 0.5 to 2.5, forming a saturated heated base oil, and coproduct. The method fractionates the saturated heated base oil while simultaneously refluxing a cooled light oil fraction forming an American Petroleum Institute Standards Group III Base Stock with less than 0.03% sulfur, with greater than 90% saturates and a viscosity index greater than 120 as defined by ASTM D-2270, a viscosity from 2 to 10 centistokes as defined by ASTM D-445 a boiling point range from 600 degrees F. to 1050 degrees F. as defined by ASTM D-86, and a cold crank viscosity (CCS) between 1200 and 5000 centipoise at minus 25 degrees C. and as defined by ASTM D-5293.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: May 14, 2019
    Inventors: Benjamin Cowart, David Peel, Frank Lappin, James Craig Smith
  • Patent number: 7385161
    Abstract: The resistance of an oxygen sensor heating element is estimated by modeling the effects of physical and electrical heating on the resistance of the heating element lead-in conductors, and subtracting the lead-in conductor resistance from a measure of the heating circuit resistance. The lead-in conductor resistance model is based on the temperature of the oxygen sensor boss and the current carried by the lead-in conductors. The heating element temperature is calculated from the determined heating element resistance and initial (cold-start) parameters of the heating circuit.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: June 10, 2008
    Assignee: Delphi Technologies, Inc.
    Inventor: James Craig Smith
  • Patent number: 7177770
    Abstract: An airflow metering device, including a conventional airflow sensing device signally connected to a signal processor is shown, having an input flow signal correlatable to a magnitude of mass air flowing past the airflow sensing device. The signal processor is operable to determine a flow correction factor based upon a direction and magnitude of the mass air flowing past the airflow sensing device. The output of the airflow metering device is an accurate measure of airflow, and comprises the input flow signal of the airflow sensing device adjusted by the flow correction factor determined by the signal processor.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: February 13, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: Lary Robert Hocken, Gregory Paul Gee, David Paul Prawdzik, Paul Louis Du Bois, James Craig Smith
  • Patent number: 7047957
    Abstract: A method and system for monitoring performance of an internal combustion engine equipped with individually actuated valve control mechanisms, such as a two-step finger-follower rocker-arm assembly, using a strategy that identifies cylinder-to-cylinder variations, is disclosed. The method and system preferably include monitoring engine operating conditions, based upon input from an exhaust gas sensor and engine sensors, and determining an engine operating point. Individual cylinder fueling modifiers are determined, each corresponding to one of the cylinders at the determined engine operating point, based upon input from the exhaust gas sensor. It is determined that the each individually actuated valve control mechanism is operating properly when a difference between the individual cylinder fueling modifier and a predetermined individual cylinder fueling modifier, each said modifier determined for the corresponding cylinder at the determined engine operating point, is less than a predetermined difference.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: May 23, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: James Craig Smith, Jon C. Darrow
  • Patent number: 7036982
    Abstract: The invention provides a control strategy and a control system to control a gas sensor to a target operating temperature. It relies upon both feedback and model-based feedforward control systems to achieve and then maintain the sensor at the target operating temperature. The mechanization includes a gas sensor with a heating element in a feedstream. The control strategy employs a control system for the heating element that is based upon the target operating temperature, the temperature of the heating element, and an effect of the feedstream and mounting structure on the temperature of the sensor. The control strategy enables the control system to optimize the heating of a sensor during warm-up and steady state operations.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: James Craig Smith, Wayne Richard Moore, Matthew G. Foster
  • Patent number: 7036351
    Abstract: An oxygen sensor heater control determines heater activation based on an open-loop control parameter and a correction factor that compensates for part-to-part variability. Following a cold start where the heater temperature can be reliably estimated, the engine controller predicts the resistance of the heating element and heater circuit at the desired operating temperature of the sensor, and computes the correction factor for heater activation based on the predicted resistance values and nominal resistance values. At least one predicted value is stored in non-volatile memory, and used to compute the correction factor following a warm or hot start of the engine.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventor: James Craig Smith
  • Publication number: 20040086023
    Abstract: The invention provides a control strategy and a control system to control a gas sensor to a target operating temperature. It relies upon both feedback and model-based feedforward control systems to achieve and then maintain the sensor at the target operating temperature. The mechanization includes a gas sensor with a heating element in a feedstream. The control strategy employs a control system for the heating element that is based upon the target operating temperature, the temperature of the heating element, and an effect of the feedstream and mounting structure on the temperature of the sensor. The control strategy enables the control system to optimize the heating of a sensor during warm-up and steady state operations.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: James Craig Smith, Wayne Richard Moore, Matthew G. Foster
  • Patent number: 6680607
    Abstract: A method for detecting steady-state convergence of a signal compares a filtered version of the signal or its derivative to a threshold over a given time interval, and a measure of the signal variability is used to tune the filter behavior. In one implementation, the signal is filtered with a high-pass filter, and the cut-off frequency of the filter is adjusted inversely with respect to the measured variability of the signal. In another implementation, the signal derivative is filtered with a low-pass filter, and the cut-off frequency of the filter is adjusted in proportion to the measured variability of the signal. In each case, the variability of the signal is measured by computing a differential of the signal and then smoothing the differential.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: January 20, 2004
    Assignee: Delphi Technologies, Inc.
    Inventor: James Craig Smith
  • Publication number: 20030214281
    Abstract: A method for detecting steady-state convergence of a signal compares a filtered version of the signal or its derivative to a threshold over a given time interval, and a measure of the signal variability is used to tune the filter behavior. In one implementation, the signal is filtered with a high-pass filter, and the cut-off frequency of the filter is adjusted inversely with respect to the measured variability of the signal. In another implementation, the signal derivative is filtered with a low-pass filter, and the cut-off frequency of the filter is adjusted in proportion to the measured variability of the signal. In each case, the variability of the signal is measured by computing a differential of the signal and then smoothing the differential.
    Type: Application
    Filed: May 15, 2002
    Publication date: November 20, 2003
    Inventor: James Craig Smith
  • Patent number: 6565064
    Abstract: An improved position control for a solenoid actuated valve, wherein the solenoid is activated based on the combination of a feed-forward component based on a model of the steady state operation of the valve and a closed-loop feedback component that responds to changes in the commanded position and compensates for any inaccuracy in the steady state model. The method involves a valve characterization procedure in which the actual force generated by the solenoid is measured for various combinations of valve position and solenoid current, resulting in a table of coil current in terms of developed force and valve position. In operation, the model is used to estimate the solenoid force required to achieve the commanded valve position under steady state operating conditions, and a controller addresses the table to obtain a feed-forward coil current command as a function of the commanded valve position and the estimated solenoid force.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: May 20, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: James Craig Smith, James F. Sinnamon, Robert J. Ewalds
  • Patent number: 6561014
    Abstract: A method and apparatus for conducting dynamometric testing of an internal combustion engine at a test site under a simulated atmospheric pressure that differs substantially from an actual ambient atmospheric pressure existing at the test site. The internal combustion engine has an air inlet for supplying an intake airflow for combustion within the internal combustion engine and an exhaust outlet for exhausting an exhaust flow exiting from the internal combustion engine. The method includes the steps of subjecting the air inlet to the simulated atmospheric pressure, subjecting the exhaust outlet to the simulated atmospheric pressure and operating the internal combustion engine while both of the air inlet and the exhaust outlet are subjected to the simulated atmospheric pressure.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: May 13, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: James Craig Smith, Peter James Maloney, Matt Osterhout
  • Publication number: 20030084712
    Abstract: A method and apparatus for conducting dynamometric testing of an internal combustion engine at a test site under a simulated atmospheric pressure that differs substantially from an actual ambient atmospheric pressure existing at the test site. The internal combustion engine has an air inlet for supplying an intake airflow for combustion within the internal combustion engine and an exhaust outlet for exhausting an exhaust flow exiting from the internal combustion engine. The method includes the steps of subjecting the air inlet to the simulated atmospheric pressure, subjecting the exhaust outlet to the simulated atmospheric pressure and operating the internal combustion engine while both of the air inlet and the exhaust outlet are subjected to the simulated atmospheric pressure.
    Type: Application
    Filed: December 20, 2002
    Publication date: May 8, 2003
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: James Craig Smith, Peter James Maloney, Matt Osterhout
  • Publication number: 20020134956
    Abstract: An improved position control for a solenoid actuated valve, wherein the solenoid is activated based on the combination of a feed-forward component based on a model of the steady state operation of the valve and a closed-loop feedback component that responds to changes in the commanded position and compensates for any inaccuracy in the steady state model. The method involves a valve characterization procedure in which the actual force generated by the solenoid is measured for various combinations of valve position and solenoid current, resulting in a table of coil current in terms of developed force and valve position. In operation, the model is used to estimate the solenoid force required to achieve the commanded valve position under steady state operating conditions, and a controller addresses the table to obtain a feed-forward coil current command as a function of the commanded valve position and the estimated solenoid force.
    Type: Application
    Filed: March 21, 2001
    Publication date: September 26, 2002
    Inventors: James Craig Smith, James F. Sinnamon, Robert J. Ewalds
  • Patent number: 6382198
    Abstract: An improved internal combustion engine fuel control wherein a single oxygen sensor responsive to the combined exhaust gas flow of several engine cylinders is used both to control the overall or average air/fuel ratio, and to trim the air/fuel ratio in the individual engine cylinders. The oxygen sensor output is sampled in synchronism with the engine firing events, but at twice (or higher) the frequency, and filtered by an engine speed dependent high-pass filter to form a measure of the air/fuel ratio imbalance with respect to time. The imbalance signal, in turn, is parsed into an array of imbalance values that are associated with individual engine cylinders based on engine operating conditions, and the imbalance values are then used to develop correction factors for the respective engine cylinders that reduce the imbalance while preserving the overall or average air/fuel ratio of the engine.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: May 7, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: James Craig Smith, Jeff Leon Kainz