Patents by Inventor James Dale Steibel

James Dale Steibel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773734
    Abstract: A coated component, along with methods of its formation and use, is provided. The coated component may include a substrate having a surface with a plurality of cavities defined therein, a bond coating (e.g., including a silicon material) on the surface of the substrate within the cavities, and an environmental barrier coating over the surface of the substrate and encasing the bond coating within the cavities such that the bond coating, when melted, is contained within the cavities. Such a coated component may be, in one embodiment, a turbine component, such as a CMC component for use in a hot gas path of a gas turbine engine.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: October 3, 2023
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Suresh Subramanian, Suresh Viswanathan, James Dale Steibel
  • Patent number: 11639315
    Abstract: A coated component, along with methods of its formation and use, is provided. The coated component may include a substrate having a surface, a first refractory layer on the surface of the substrate, a silicon-based bond coating on the first refractory layer, and an environmental barrier coating on the silicon-based bond coating. The silicon-based bond coating includes a silicon-phase contained within a refractory phase such that, when melted, the silicon-phase is contained within the refractory phase and between the surface of the substrate and an inner surface of the environmental barrier coating.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: May 2, 2023
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Suresh Subramanian, Suresh Viswanathan, James Dale Steibel
  • Patent number: 11414354
    Abstract: A ceramic matrix composite article includes a melt infiltration ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a first free silicon proportion, and a melt infiltration ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having a second free silicon proportion disposed on an outer surface of at least a portion of the substrate, or a polymer impregnation and pyrolysis ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having a second free silicon proportion disposed on an outer surface of at least a portion of the substrate. The second free silicon proportion is less than the first free silicon proportion.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: August 16, 2022
    Assignee: General Electric Company
    Inventor: James Dale Steibel
  • Patent number: 11401217
    Abstract: A coated component, along with method of forming the same, is provided. The coated component may include a substrate having a surface, a silicon-based bond coating on the surface of the substrate, and an EBC on the silicon-based bond coating. The silicon-based bond coating may include a silicon-phase contained within a refractory phase. The silicon-phase, when melted, is contained within the refractory phase and between the surface of the substrate and an inner surface of the environmental barrier coating. Such a coated component may be, in particular embodiments, a turbine component.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: August 2, 2022
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Suresh Subramanian, Suresh Viswanathan, James Dale Steibel
  • Patent number: 10774008
    Abstract: A ceramic matrix composite article includes a chemical vapor infiltration ceramic matrix composite base portion including ceramic fiber reinforcement material in a ceramic matrix material having between 0% and 5% free silicon. The ceramic matrix composite article further includes a melt infiltration ceramic matrix composite covering portion including a ceramic fiber reinforcement material in a ceramic matrix material having a greater percentage of free silicon than the chemical vapor infiltration ceramic matrix composite base portion.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: September 15, 2020
    Assignee: General Electric Company
    Inventors: Suresh Subramanian, Mark Eugene Noe, James Dale Steibel, Jason David Shapiro, Brandon ALIanson Reynolds, Kurtis C. Montgomery, Jared Hogg Weaver, Daniel Gene Dunn
  • Patent number: 10329201
    Abstract: A method for forming a ceramic matrix composite article includes laying up a first group of plies; laying up a second group of plies, the first and second groups of plies being adjacent to each other; compacting the first group of plies and the second group of plies in the same processing step; and performing a first infiltration process on the first group of plies. The method also includes performing a second infiltration process on the second group of plies, the first infiltration process being one of a melt infiltration process or a chemical vapor infiltration process, and the second infiltration process being the other of the melt infiltration process or the chemical vapor infiltration process.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 25, 2019
    Assignee: General Electric Company
    Inventors: James Dale Steibel, Suresh Subramanian, Suresh Viswanathan, Jared Hogg Weaver
  • Publication number: 20190084891
    Abstract: A method for forming a ceramic matrix composite article includes laying up a first group of plies; laying up a second group of plies, the first and second groups of plies being adjacent to each other; compacting the first group of plies and the second group of plies in the same processing step; and performing a first infiltration process on the first group of plies. The method also includes performing a second infiltration process on the second group of plies, the first infiltration process being one of a melt infiltration process or a chemical vapor infiltration process, and the second infiltration process being the other of the melt infiltration process or the chemical vapor infiltration process.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: James Dale Steibel, Suresh Subramanian, Suresh Viswanathan, Jared Hogg Weaver
  • Publication number: 20190084892
    Abstract: A ceramic matrix composite article includes a chemical vapor infiltration ceramic matrix composite base portion including ceramic fiber reinforcement material in a ceramic matrix material having between 0% and 5% free silicon. The ceramic matrix composite article further includes a melt infiltration ceramic matrix composite covering portion including a ceramic fiber reinforcement material in a ceramic matrix material having a greater percentage of free silicon than the chemical vapor infiltration ceramic matrix composite base portion.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: Suresh Subramanian, Mark Eugene Noe, James Dale Steibel, Jason David Shapiro, Brandon ALlanson Reynolds, Kurtis C. Montgomery, Jared Hogg Weaver, Daniel Gene Dunn
  • Publication number: 20190071769
    Abstract: A coated component, along with methods of its formation and use, is provided. The coated component may include a substrate having a surface, a first refractory layer on the surface of the substrate, a silicon-based bond coating on the first refractory, and an environmental barrier coating on the silicon-based bond coating. The silicon-based bond coating includes a silicon-phase contained within a refractory phase such that, when melted, the silicon-phase is contained within the refractory phase and between the surface of the substrate and an inner surface of the environmental barrier coating.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 7, 2019
    Inventors: Glen Harold Kirby, Suresh Subramanian, Suresh Viswanathan, James Dale Steibel
  • Publication number: 20190071358
    Abstract: A coated component, along with method of forming the same, is provided. The coated component may include a substrate having a surface, a silicon-based bond coating on the surface of the substrate, and an EBC on the silicon-based bond coating. The silicon-based bond coating may include a silicon-phase contained within a refractory phase. The silicon-phase, when melted, is contained within the refractory phase and between the surface of the substrate and an inner surface of the environmental barrier coating. Such a coated component may be, in particular embodiments, a turbine component.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 7, 2019
    Inventors: Glen Harold Kirby, Suresh Subramanian, Suresh Viswanathan, James Dale Steibel
  • Publication number: 20190071983
    Abstract: A coated component, along with methods of its formation and use, is provided. The coated component may include a substrate having a surface with a plurality of cavities defined therein, a bond coating (e.g., including a silicon material) on the surface of the substrate within the cavities, and an environmental barrier coating over the surface of the substrate and encasing the bond coating within the cavities such that the bond coating, when melted, is contained within the cavities. Such a coated component may be, in one embodiment, a turbine component, such as a CMC component for use in a hot gas path of a gas turbine engine.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 7, 2019
    Inventors: Glen Harold Kirby, Suresh Subramanian, Suresh Viswanathan, James Dale Steibel
  • Patent number: 10196315
    Abstract: Methods for forming a ceramic matrix composite (CMC) are generally provided. The method may include melt infiltrating a silicon mixture into a ceramic matrix composite preform, with the silicon mixture including SiGa, SiIn, or a mixture thereof. The silicon mixture may include silicon metal in combination with SiGa, SiIn, or the mixture thereof. Additionally, the silicon mixture may further include B within the SiGa, SiIn, or the mixture thereof (e.g., in the form of SiBGa, SiBIn, or a mixture thereof).
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: February 5, 2019
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, James Dale Steibel
  • Publication number: 20190031569
    Abstract: A ceramic matrix composite article includes a melt infiltration ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a first free silicon proportion, and a melt infiltration ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having a second free silicon proportion disposed on an outer surface of at least a portion of the substrate, or a polymer impregnation and pyrolysis ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having a second free silicon proportion disposed on an outer surface of at least a portion of the substrate. The second free silicon proportion is less than the first free silicon proportion.
    Type: Application
    Filed: May 22, 2018
    Publication date: January 31, 2019
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: James Dale STEIBEL
  • Publication number: 20180194689
    Abstract: Methods for forming a ceramic matrix composite (CMC) are generally provided. The method may include melt infiltrating a silicon mixture into a ceramic matrix composite preform, with the silicon mixture including SiGa, SiIn, or a mixture thereof. The silicon mixture may include silicon metal in combination with SiGa, SiIn, or the mixture thereof. Additionally, the silicon mixture may further include B within the SiGa, SiIn, or the mixture thereof (e.g., in the form of SiBGa, SiBIn, or a mixture thereof).
    Type: Application
    Filed: January 11, 2017
    Publication date: July 12, 2018
    Inventors: Glen Harold Kirby, James Dale Steibel
  • Patent number: 9975815
    Abstract: A method for forming a ceramic matrix composite article includes forming a ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a first free silicon proportion by melt infiltration; forming a ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having a second free silicon proportion by melt infiltration or polymer impregnation pyrolysis disposed on at least a portion of the substrate. The second free silicon proportion being less than the first free silicon proportion.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: May 22, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: James Dale Steibel
  • Publication number: 20170348876
    Abstract: A method of fabricating a laminar composite article, includes steps of spreading a plurality of continuous fiber tows from a spool to form a first ply layer having a substantially consistent layer thickness, applying a binder to the spread plurality of continuous fiber tows, curing the plurality of continuous fiber tows and applied binder at a cure temperature less than a thermal decomposition temperature of the binder, and processing the cured plurality of continuous fiber tows at a post-cure temperature greater than the cure temperature.
    Type: Application
    Filed: May 31, 2016
    Publication date: December 7, 2017
    Inventors: Wendy Wen-Ling Lin, Douglas Duane Ward, James Dale Steibel
  • Publication number: 20160251270
    Abstract: A ceramic matrix composite article includes a melt infiltration ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a first free silicon proportion, and a melt infiltration ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having a second free silicon proportion disposed on an outer surface of at least a portion of the substrate, or a polymer impregnation and pyrolysis ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having a second free silicon proportion disposed on an outer surface of at least a portion of the substrate. The second free silicon proportion is less than the first free silicon proportion.
    Type: Application
    Filed: February 26, 2015
    Publication date: September 1, 2016
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: James Dale STEIBEL
  • Patent number: 9005382
    Abstract: A method for forming a ceramic matrix composite (CMC) component for gas turbine engines. The method contemplates replacing a plurality of plies with insert material. The insert material can be partially cured or pre-cured and applied in place of a plurality of small plies or it may be inserted into cavities of a component in the form of a paste or a ply. The insert material is isotropic, being formed of a combination of matrix material and chopped fibers, tow, cut plies or combinations thereof. The use of the insert material allows for features such as thin edges (650) with thicknesses of less than about 0.030 inches and small radii such as found in corners (680, 710). The CMC components of the present invention replace small ply inserts cut to size to fit into areas of contour change or thickness change, and replace the small ply inserts with a fabricated single piece discontinuously reinforced composite insert, resulting in fewer defects, such as wrinkles, and better dimensional control.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 14, 2015
    Assignee: General Electric Company
    Inventors: James Dale Steibel, Douglas Melton Carper, Suresh Subramanian, Stephen Mark Whiteker
  • Patent number: 8173206
    Abstract: Methods for repairing barrier coatings involving providing a component having a barrier coating including at least one damaged portion, removing the damaged portion of the barrier coating leaving a void, applying a replacement tape cast barrier coating to the void of the component, and sintering the component having the replacement tape cast barrier coating layer.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 8, 2012
    Assignee: General Electric Company
    Inventors: Brett Allen Boutwell, Glen Harold Kirby, Jessica Lee Licardi, Jeffrey Allan Pfaendtner, James Dale Steibel
  • Publication number: 20110229337
    Abstract: The present invention is a hybrid ceramic matrix composite turbine engine component comprising an outer shell section(s) and an inner core section(s), wherein the outer shell section(s) and the inner core section(s) were bonded together using a melt infiltration (MI) process. The outer shell section(s) comprises a SiC/SiC material that has been manufactured using a process selected from the group consisting of a slurry cast MI process and a prepreg MI process. The inner core section(s) comprises a material selected from the group consisting an Si/SiC composite material and a monolithic ceramic material. The Si/SiC composite material may be manufactured using the Silcomp process. The present invention may be a high pressure turbine blade, a high pressure turbine vane, a low pressure turbine blade, or a low pressure turbine vane. The present invention is also a method of manufacturing a hybrid ceramic matrix composite turbine engine component.
    Type: Application
    Filed: June 30, 2010
    Publication date: September 22, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Douglas Melton Carper, Suresh Subramanian, Richard William Jendrix, James Dale Steibel