Patents by Inventor James Douglas Risbeck

James Douglas Risbeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7270764
    Abstract: A method for selectively removing an aluminide coating from at least one surface of a metal-based substrate by: (a) contacting the surface of the substrate with at least one stripping composition comprising nitric acid at a temperature less than about 20° C. to degrade the coating without damaging the substrate; and (b) removing the degraded coating without damaging the substrate. Also disclosed is a method for replacing a worn or damaged aluminide coating on at least one surface of a metal-based substrate by selectively removing the coating using the above steps, and then applying a new aluminide coating to the surface of the substrate. Turbine engine parts, such as high-pressure turbine blades, treated using the above methods are also disclosed.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 18, 2007
    Assignee: General Electric Company
    Inventors: Roger Dale Wustman, Mark Alan Rosenzweig, William Clarke Brooks, Brian H. Pilsner, James Douglas Risbeck, Richard Roy Worthing, Jr.
  • Patent number: 7008553
    Abstract: A method for selectively removing an aluminide coating from at least one surface of a metal-based substrate by: (a) contacting the surface of the substrate with at least one stripping composition comprising nitric acid at a temperature less than about 20° C. to degrade the coating without damaging the substrate; and (b) removing the degraded coating without damaging the substrate. Also disclosed is a method for replacing a worn or damaged aluminide coating on at least one surface of a metal-based substrate by selectively removing the coating using the above steps, and then applying a new aluminide coating to the surface of the substrate. Turbine engine parts, such as high-pressure turbine blades, treated using the above methods are also disclosed.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: March 7, 2006
    Assignee: General Electric Company
    Inventors: Roger Dale Wustman, Mark Alan Rosenzweig, William Clarke Brooks, Brian H. Pilsner, James Douglas Risbeck, Richard Roy Worthing, Jr.
  • Patent number: 6629464
    Abstract: A method for quality control monitoring of laser shock peening a surface of a production workpiece during which laser beam pulses form a plurality of corresponding plasmas. An acoustic signal of each laser beam pulse during a period of time during a duration of each corresponding one of the plasmas is monitored and an acoustic energy parameter value for each of the acoustic signals for each of the corresponding laser pulses is calculated. A statistical function value of the workpiece based on the acoustic energy parameter values is calculated and compared to a pass or fail criteria for accepting or rejecting the workpiece. The criteria may be based on a pre-determined correlation of test piece statistical function data such as high cycle fatigue failure data of test pieces. The statistical function value may be an average of the acoustic energy parameter values of the laser beam pulses.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: October 7, 2003
    Inventors: Ui Won Suh, James Douglas Risbeck
  • Publication number: 20030062349
    Abstract: A method for quality control monitoring of laser shock peening a surface of a production workpiece during which laser beam pulses form a plurality of corresponding plasmas. An acoustic signal of each laser beam pulse during a period of time during a duration of each corresponding one of the plasmas is monitored and an acoustic energy parameter value for each of the acoustic signals for each of the corresponding laser pulses is calculated. A statistical function value of the workpiece based on the acoustic energy parameter values is calculated and compared to a pass or fail criteria for accepting or rejecting the workpiece. The criteria may be based on a pre-determined correlation of test piece statistical function data such as high cycle fatigue failure data of test pieces. The statistical function value may be an average of the acoustic energy parameter values of the laser beam pulses.
    Type: Application
    Filed: October 3, 2001
    Publication date: April 3, 2003
    Inventors: Ui Won Suh, James Douglas Risbeck