Patents by Inventor James Dunphy

James Dunphy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11500295
    Abstract: The present application relates to contact immersion lithography exposure units and methods of their use. An example contact exposure unit includes a container configured to contain a fluid material and a substrate disposed within the container. The substrate has a first surface and a second surface, and the substrate includes a photoresist material on at least the first surface. The contact exposure unit includes a photomask disposed within the container. The photomask is optically coupled to the photoresist material by way of a gap comprising the fluid material. The contact exposure unit also includes an inflatable balloon configured to be controllably inflated so as to apply a desired force to the second surface of the substrate to controllably adjust the gap between the photomask and the photoresist material.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: November 15, 2022
    Assignee: Waymo LLC
    Inventors: Hongqin Shi, Yeh-Jiun Tung, James Dunphy, Cesar Gensoli
  • Publication number: 20220299705
    Abstract: One example LIDAR device comprises a substrate and a waveguide disposed on the substrate. A first section of the waveguide extends lengthwise on the substrate in a first direction. A second section of the waveguide extends lengthwise on the substrate in a second direction different than the first direction. A third section of the waveguide extends lengthwise on the substrate in a third direction different than the second direction. The second section extends lengthwise between the first section and the second section. The LIDAR device also comprises a light emitter configured to emit light. The waveguide is configured to guide the light inside the first section toward the second section, inside the second section toward the third section, and inside the third section away from the second section.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 22, 2022
    Inventors: James Dunphy, David Hutchison, Pierre-Yves Droz, Yeh-Jiun Tung
  • Patent number: 11385406
    Abstract: One example LIDAR device comprises a substrate and a waveguide disposed on the substrate. A first section of the waveguide extends lengthwise on the substrate in a first direction. A second section of the waveguide extends lengthwise on the substrate in a second direction different than the first direction. A third section of the waveguide extends lengthwise on the substrate in a third direction different than the second direction. The second section extends lengthwise between the first section and the second section. The LIDAR device also comprises a light emitter configured to emit light. The waveguide is configured to guide the light inside the first section toward the second section, inside the second section toward the third section, and inside the third section away from the second section.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: July 12, 2022
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Hutchison, Pierre-Yves Droz, Yeh-Jiun Tung
  • Publication number: 20220137230
    Abstract: Example embodiments relate to light detection and ranging (lidar) devices having vertical-cavity surface-emitting laser (VCSEL) emitters. An example lidar device includes an array of individually addressable VCSELs configured to emit light pulses into an environment surrounding the lidar device. The lidar device also includes a firing circuit configured to selectively fire the individually addressable VCSELs in the array. In addition, the lidar device includes a controller configured to control the firing circuit using a control signal. Further, the lidar device includes a plurality of detectors. Each detector in the plurality of detectors is configured to detect reflections of light pulses that are emitted by one or more individually addressable VCSELs in the array and reflected by one or more objects in the environment surrounding the lidar device.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 5, 2022
    Inventors: David Schleuning, James Dunphy, Augusto Tazzoli, Matthew Last
  • Publication number: 20220082660
    Abstract: Example embodiments relate to light detection and ranging (lidar) devices having a light-guide manifold. An example lidar device includes a transmit subsystem. The transmit subsystem includes a light emitter. The transmit subsystem also includes a light-guide manifold optically coupled to the light emitter. Further, the transmit subsystem includes a telecentric lens assembly optically coupled to the light-guide manifold. The lidar device also includes a receive subsystem. The receive subsystem includes the telecentric lens assembly. The receive subsystem also includes an aperture plate having an aperture defined therein. The aperture plate is positioned at a focal plane of the telecentric lens assembly. Further, the receive subsystem includes a silicon photomultiplier (SiPM) positioned to receive light traveling through the aperture.
    Type: Application
    Filed: December 15, 2020
    Publication date: March 17, 2022
    Inventors: Pierre-Yves Droz, Ralph H. Shepard, Augusto Tazzoli, David Hutchison, David Schleuning, Nathaniel Golshan, Nathaniel Quillin, Andrew Abo, Caner Onal, Michael Tom, Robert Lockwood, Kelvin Kwong, Daiwei Li, Drew Ulrich, Simon Ellgas, Chandra Kakani, Erin Eppard, Samuel Lenius, Justin Andrade, James Dunphy
  • Patent number: 11275312
    Abstract: The present application relates to contact immersion lithography systems and methods of their use. An example immersion lithography system includes a photomask substrate and at least one sensor disposed along a surface of the photomask substrate. The immersion lithography system also includes a controller having at least one processor and a memory. The at least one processor is configured to execute program instructions stored in the memory so as to carry out operations. The operations include receiving, from the at least one sensor, information indicative of an electric field proximate to the at least one sensor. The operations also include determining, based on the received information, at least one of: a thickness of a liquid layer adjacent to the photomask substrate or a distance to a further substrate adjacent to the photomask substrate.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 15, 2022
    Assignee: Waymo LLC
    Inventors: James Dunphy, Hongqin Shi, David Hutchison, Yeh-Jiun Tung, Eric Copenhaver, Nao Chuei
  • Publication number: 20220018942
    Abstract: One example system comprises a plurality of substrates disposed in an overlapping arrangement. The plurality of substrates includes at least a first substrate and a second substrate. The system also comprises a first waveguide disposed on the first substrate to define a first optical path on the first substrate. The first waveguide is configured to guide light along the first optical path and to transmit, at an output section of the first waveguide, the light out of the first waveguide toward the second substrate. The system also comprises a second waveguide disposed on the second substrate to define a second optical path on the second substrate. An input section of the second waveguide is aligned with the output section of the first waveguide to receive the light transmitted by the first waveguide. The second waveguide is configured to guide the light along the second optical path.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Inventors: James Dunphy, David Hutchison
  • Publication number: 20210405536
    Abstract: The present disclosure relates to systems and methods relating to the fabrication of light guide elements. An example system includes an optical component configured to direct light emitted by a light source to illuminate a photoresist material at one or more desired angles so as to expose an angled structure in the photoresist material. The photoresist material overlays at least a portion of a first surface of a substrate. The optical component includes a container containing a light-coupling material that is selected based in part on the one or more desired angles. The system also includes a reflective surface arranged to reflect at least a first portion of the emitted light to illuminate the photoresist material at the one or more desired angles.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Inventors: James Dunphy, David Hutchison
  • Publication number: 20210397094
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example system may include an optical component configured to direct light from a light source to illuminate a photoresist material at a desired angle and to expose at least a portion of an angled structure in the photoresist material, where the photoresist material overlays at least a portion of a top surface of a substrate. The optical component includes a container containing an light-coupling material that is selected based in part on the desired angle. The optical component also includes a mirror arranged to reflect at least a portion of the light to illuminate the photoresist material at the desired angle.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Inventors: James Dunphy, David Hutchison
  • Publication number: 20210349185
    Abstract: Example embodiments relate to crosstalk reduction for light detection and ranging (lidar) devices using wavelength locking. An example embodiment includes a lidar device. The lidar device includes a first light emitter configured to emit a first light signal and a second light emitter configured to emit a second light signal. The lidar device also includes a first light guide and a second light guide. In addition, the lidar device includes a first light detector and a second light detector. Further, the lidar device includes a first wavelength-locking mechanism configured to use a portion of the first light signal to maintain a wavelength of the first light signal and a second wavelength-locking mechanism configured to use a portion of the second light signal to maintain a wavelength of the second light signal. The wavelengths of the first light signal and the second light signal are different.
    Type: Application
    Filed: October 1, 2020
    Publication date: November 11, 2021
    Inventors: David Schleuning, Pierre-Yves Droz, Jason Watson, James Dunphy
  • Patent number: 11156699
    Abstract: One example system comprises a plurality of substrates disposed in an overlapping arrangement. The plurality of substrates includes at least a first substrate and a second substrate. The system also comprises a first waveguide disposed on the first substrate to define a first optical path on the first substrate. The first waveguide is configured to guide light along the first optical path and to transmit, at an output section of the first waveguide, the light out of the first waveguide toward the second substrate. The system also comprises a second waveguide disposed on the second substrate to define a second optical path on the second substrate. An input section of the second waveguide is aligned with the output section of the first waveguide to receive the light transmitted by the first waveguide. The second waveguide is configured to guide the light along the second optical path.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: October 26, 2021
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Hutchison
  • Patent number: 11131934
    Abstract: The present disclosure relates to systems and methods relating to the fabrication of light guide elements. An example system includes an optical component configured to direct light emitted by a light source to illuminate a photoresist material at one or more desired angles so as to expose an angled structure in the photoresist material. The photoresist material overlays at least a portion of a first surface of a substrate. The optical component includes a container containing a light-coupling material that is selected based in part on the one or more desired angles. The system also includes a reflective surface arranged to reflect at least a first portion of the emitted light to illuminate the photoresist material at the one or more desired angles.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: September 28, 2021
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Hutchison
  • Patent number: 11131929
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example system may include an optical component configured to direct light from a light source to illuminate a photoresist material at a desired angle and to expose at least a portion of an angled structure in the photoresist material, where the photoresist material overlays at least a portion of a top surface of a substrate. The optical component includes a container containing an light-coupling material that is selected based in part on the desired angle. The optical component also includes a mirror arranged to reflect at least a portion of the light to illuminate the photoresist material at the desired angle.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: September 28, 2021
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Hutchison
  • Patent number: 11125941
    Abstract: One example system comprises a substrate and a waveguide disposed on the substrate to define an optical path on the substrate. The waveguide is configured to guide, inside the waveguide and along the optical path, a light signal toward an edge of the waveguide. The edge defines an optical interface between the waveguide and a fluidic optical medium adjacent to the edge of the waveguide. The system also includes an optical fluid and a fluid actuator configured to adjust a physical state of the optical fluid based on a control signal. The adjustment of the physical state of the optical fluid causes an adjustment of the fluidic optical medium adjacent to the edge.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: September 21, 2021
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Hutchison
  • Publication number: 20210191276
    Abstract: The present application relates to contact immersion lithography exposure units and methods of their use. An example contact exposure unit includes a container configured to contain a fluid material and a substrate disposed within the container. The substrate has a first surface and a second surface, and the substrate includes a photoresist material on at least the first surface. The contact exposure unit includes a photomask disposed within the container. The photomask is optically coupled to the photoresist material by way of a gap comprising the fluid material. The contact exposure unit also includes an inflatable balloon configured to be controllably inflated so as to apply a desired force to the second surface of the substrate to controllably adjust the gap between the photomask and the photoresist material.
    Type: Application
    Filed: February 3, 2021
    Publication date: June 24, 2021
    Inventors: Hongqin Shi, Yeh-Jiun Tung, James Dunphy, Cesar Gensoli
  • Publication number: 20210124269
    Abstract: The present disclosure relates to systems and methods relating to the fabrication of light guide elements. An example system includes an optical component configured to direct light emitted by a light source to illuminate a photoresist material at one or more desired angles so as to expose an angled structure in the photoresist material. The photoresist material overlays at least a portion of a first surface of a substrate. The optical component includes a container containing a light-coupling material that is selected based in part on the one or more desired angles. The system also includes a reflective surface arranged to reflect at least a first portion of the emitted light to illuminate the photoresist material at the one or more desired angles.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Inventors: James Dunphy, David Hutchison
  • Publication number: 20210124020
    Abstract: One example LIDAR device comprises a substrate and a waveguide disposed on the substrate. A first section of the waveguide extends lengthwise on the substrate in a first direction. A second section of the waveguide extends lengthwise on the substrate in a second direction different than the first direction. A third section of the waveguide extends lengthwise on the substrate in a third direction different than the second direction. The second section extends lengthwise between the first section and the second section. The LIDAR device also comprises a light emitter configured to emit light. The waveguide is configured to guide the light inside the first section toward the second section, inside the second section toward the third section, and inside the third section away from the second section.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Inventors: James Dunphy, David Hutchison, Pierre-Yves Droz, Yeh-Jiun Tung
  • Publication number: 20210124023
    Abstract: One example system comprises a plurality of substrates disposed in an overlapping arrangement. The plurality of substrates includes at least a first substrate and a second substrate. The system also comprises a first waveguide disposed on the first substrate to define a first optical path on the first substrate. The first waveguide is configured to guide light along the first optical path and to transmit, at an output section of the first waveguide, the light out of the first waveguide toward the second substrate. The system also comprises a second waveguide disposed on the second substrate to define a second optical path on the second substrate. An input section of the second waveguide is aligned with the output section of the first waveguide to receive the light transmitted by the first waveguide. The second waveguide is configured to guide the light along the second optical path.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Inventors: James Dunphy, David Hutchison
  • Patent number: 10948830
    Abstract: The present application relates to contact immersion lithography exposure units and methods of their use. An example contact exposure unit includes a container configured to contain a fluid material and a substrate disposed within the container. The substrate has a first surface and a second surface, and the substrate includes a photoresist material on at least the first surface. The contact exposure unit includes a photomask disposed within the container. The photomask is optically coupled to the photoresist material by way of a gap comprising the fluid material. The contact exposure unit also includes an inflatable balloon configured to be controllably inflated so as to apply a desired force to the second surface of the substrate to controllably adjust the gap between the photomask and the photoresist material.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: March 16, 2021
    Assignee: Waymo LLC
    Inventors: Hongqin Shi, Yeh-Jiun Tung, James Dunphy, Cesar Gensoli
  • Publication number: 20200142312
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example system may include an optical component configured to direct light from a light source to illuminate a photoresist material at a desired angle and to expose at least a portion of an angled structure in the photoresist material, where the photoresist material overlays at least a portion of a top surface of a substrate. The optical component includes a container containing an light-coupling material that is selected based in part on the desired angle. The optical component also includes a mirror arranged to reflect at least a portion of the light to illuminate the photoresist material at the desired angle.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 7, 2020
    Inventors: James Dunphy, David Hutchison