Patents by Inventor James E. Gunter

James E. Gunter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9017590
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 28, 2015
    Assignee: Biomet Manufacturing, LLC
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20130245772
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 19, 2013
    Applicant: BIOMET MANUFACTURING CORP.
    Inventors: David W. SCHROEDER, Jordan H. FREEDMAN, James E. GUNTER, Brian D. SALYER, H. Gene HAWKINS
  • Patent number: 8398913
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: March 19, 2013
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 8262976
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a desirable combination of physical and chemical properties. Crosslinked bulk materials are heated to a compression deformable temperature, and pressure is applied to change a transverse dimension of the material. After cooling and stress relieving, a treated bulk material is obtained that has enhanced tensile strength in the axial direction orthogonal to the dimension change. In preferred embodiments, medical implant bearing materials are machined from the treated bulk material with the in vivo load bearing axis substantially parallel or coincident with the axial direction of the treated bulk material.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: September 11, 2012
    Assignee: Biomet Manufacturing Corp.
    Inventors: David Wayne Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 8137608
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: March 20, 2012
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20110272862
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 10, 2011
    Applicant: BIOMET MANUFACTURING CORP.
    Inventors: David W. SCHROEDER, Jordan H. FREEDMAN, James E. GUNTER, Brian D. SALYER, H. Gene HAWKINS
  • Patent number: 7993401
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 9, 2011
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7927536
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 19, 2011
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20100314800
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Application
    Filed: August 3, 2010
    Publication date: December 16, 2010
    Applicant: Biomet Manufacturing Corporation
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20100298945
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Application
    Filed: August 3, 2010
    Publication date: November 25, 2010
    Applicant: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7780896
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: August 24, 2010
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20090224428
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a desirable combination of physical and chemical properties. Crosslinked bulk materials are heated to a compression deformable temperature, and pressure is applied to change a transverse dimension of the material. After cooling and stress relieving, a treated bulk material is obtained that has enhanced tensile strength in the axial direction orthogonal to the dimension change. In preferred embodiments, medical implant bearing materials are machined from the treated bulk material with the in vivo load bearing axis substantially parallel or coincident with the axial direction of the treated bulk material.
    Type: Application
    Filed: May 22, 2009
    Publication date: September 10, 2009
    Applicant: Biomet Manufacturing Corp.
    Inventors: David Wayne SCHROEDER, Jordan H. FREEDMAN, James E. GUNTER, Brian D. SALYER, H. Gene HAWKINS
  • Patent number: 7547405
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a desirable combination of physical and chemical properties. Crosslinked bulk materials are heated to a compression deformable temperature, and pressure is applied to change a transverse dimension of the material. After cooling and stress relieving, a treated bulk material is obtained that has enhanced tensile strength in the axial direction orthogonal to the dimension change. In preferred embodiments, medical implant bearing materials are machined from the treated bulk material with the in vivo load bearing axis substantially parallel or coincident with the axial direction of the treated bulk material.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: June 16, 2009
    Assignee: Biomet Manufacturing Corp.
    Inventors: David Wayne Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20090082546
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Application
    Filed: December 4, 2008
    Publication date: March 26, 2009
    Applicant: Biomet Manufacturing Corp.
    Inventors: David W. SCHROEDER, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7462318
    Abstract: A radiation crosslinked (50 kGy), pressure-treated UHMWPE material has been developed by applying compressive force on a crosslinked polymer in a direction orthogonal to an axial direction. The deformed material is then cooled while held in a deformed state. The resulting material is anisotropic, with enhanced strength oriented along the axial direction. The directionally engineered material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPEs.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: December 9, 2008
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Publication number: 20080140196
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Application
    Filed: February 21, 2008
    Publication date: June 12, 2008
    Applicant: Biomet Manufacturing Corporation
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7344672
    Abstract: Solid-state deformation processing of crosslinked high molecular weight polymers such as UHMWPE, for example by extrusion below the melt transition, produces materials with a combination of high tensile strength and high oxidative stability. The materials are especially suitable for use as bearing components in artificial hip and other implants. Treated bulk materials are anisotropic, with enhanced strength oriented along the axial direction. The material is oxidatively stable even after four weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003). Because of its oxidative stability, the deformation processed material is a suitable candidate for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted crosslinked UHMWPE.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: March 18, 2008
    Assignee: Biomet Manufacturing Corp.
    Inventors: David W. Schroeder, Jordan H. Freedman, James E. Gunter, Brian D. Salyer, H. Gene Hawkins
  • Patent number: 7293395
    Abstract: An apparatus and method for producing container assemblies having a cup-shaped insert disposed within a container. A container conveyor conveys a series of open containers along a lower horizontal path, the container conveyor bringing each container in turn to a stop at an insertion station. A generally vertical inserter chute is disposed above the insertion station for conducting a generally cup-shaped insert through the inserter and out the lower end into a container positioned at the insertion station. An insert conveyor disposed above the inserter conveys a series of inserts along an upper horizontal path, each insert on the insert conveyor having an open end and an opposite closed end and being in an inverted orientation such that the open end of the insert faces downward. A lead one of the inserts being conveyed on the insert conveyor tips over and falls into the inserter in an upright orientation.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: November 13, 2007
    Assignee: Sonoco Development, Inc.
    Inventors: Robert Galloway, James E. Gunter, Mark Palmieri