Patents by Inventor James Easel Roberts

James Easel Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140017365
    Abstract: Methods and systems for fluid stabilization are provided. The system includes a first electrical field generator positioned adjacent to a first passage. The first electrical field generator imparts a first electrical field to a fluid flowing through the first passage such that first particles and second particles entrained in the fluid are charged to a first polarity. A first collector positioned within the first passage collects the first particles charged in the fluid. A second electrical field generator positioned adjacent to a second passage is downstream from the first electrical field generator. The second electrical field generator imparts a second electrical field to the fluid discharged from the first passage and substantially neutralizes the second particles entrained in the fluid.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Inventors: Robert Warren Taylor, Bradley Stephen Rogers, James Easel Roberts, Allen Lawrence Garner
  • Patent number: 8479489
    Abstract: An exhaust gas recirculation (EGR) system and a method for recirculating an exhaust gas stream from an outlet to an inlet of a turbomachine are provided. The EGR system includes a guide element to channel the exhaust gas stream from the inlet to the outlet and a Rankine cycle system through which a working fluid is circulated. The Rankine cycle system including serially a high temperature heat exchanger in heat exchange relationship with the guide element; an expansion device coupled to a generator; a low temperature heat exchanger in heat exchange relationship with a cooling medium; and a pump. The exhaust stream at the outlet has a first temperature and the exhaust stream downstream of the high temperature heat exchanger has a second temperature that is lower than the first temperature.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: Robert Warren Taylor, James Easel Roberts
  • Patent number: 8398744
    Abstract: A method, apparatus and system for minimizing a quantity of particulate matter entrained within a gas stream is provided. A coarse filter removes at least a portion of particulate matter having a relatively-large particle size from the gas stream. An agglomerator agglomerates particulate matter having a relatively-small particle size remaining in the gas stream into particulate clusters after the portion of the particulate matter having the relatively-large particle size has been removed by the coarse filter. An injector introduces an agglomerating material into the gas stream before the gas stream enters the agglomerator. The agglomerating material promotes agglomeration of the particulate matter having the relatively-small particle size into the particulate clusters. And a second filter receives the gas stream and removes at least a portion of the particulate clusters entrained within the gas stream exiting the agglomerator.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventors: Bradley Stephen Rogers, James Easel Roberts
  • Patent number: 8236093
    Abstract: A method of reducing the concentration of pollutants in a combustion flue gas having a first temperature is provided. The method includes the step of providing an organic Rankine cycle apparatus utilizing a working fluid and including at least one heat exchanger is arranged in thermal communication with the flue gas. The method further includes the step of reducing the temperature of the flue gas to a second temperature less than the first temperature by vaporizing the working fluid within the heat exchanger utilizing thermal energy derived from the flue gas. The method further includes the step of filtering the flue gas through at least one filter disposed downstream of the heat exchanger to remove pollutants from the flue gas. An associated system configured to reduce the concentration of pollutants in the combustion flue gas is also provided.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: August 7, 2012
    Assignee: BHA Group, Inc.
    Inventors: Robert Warren Taylor, James Easel Roberts, Charles Michael Booth
  • Patent number: 8220420
    Abstract: A system and associated method for removing accumulated debris from a surface of a vessel. The system includes an impulse cleaning device defining a combustion chamber in which combustible fuel and air are mixed and ignited to produce combustion that is directed at the surface to be cleaned within the vessel, and an eductor assembly surrounding a downstream end of the chamber for inducting surrounding atmosphere into the combustion to widen the area being cleaned.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: July 17, 2012
    Assignee: General Electric Company
    Inventors: Robert Warren Taylor, David Chapin, Terry Farmer, James Easel Roberts
  • Publication number: 20120067213
    Abstract: A method, apparatus and system for minimizing a quantity of particulate matter entrained within a gas stream is provided. A course filter removes at least a portion of particulate matter having a relatively-large particle size from the gas stream. An agglomerator agglomerates particulate matter having a relatively-small particle size remaining in the gas stream into particulate clusters after the portion of the particulate matter having the relatively-large particle size has been removed by the course filter. An injector introduces an agglomerating material into the gas stream before the gas stream enters the agglomerator. The agglomerating material promotes agglomeration of the particulate matter having the relatively-small particle size into the particulate clusters. And a second filter receives the gas stream and removes at least a portion of the particulate clusters entrained within the gas stream exiting the agglomerator.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: General Electric Company
    Inventors: Bradley Stephen Rogers, James Easel Roberts
  • Patent number: 8038776
    Abstract: An inlet air filtration system for a gas turbine includes, in an exemplary embodiment, an air plenum, and a plurality of filter elements mounted inside the air plenum, with each filter element including a support structure. The inlet air filtration system also includes a plurality of electrodes positioned proximate the plurality of filter elements, where the electrodes are coupled to a power source which supplies a voltage to the electrodes. The voltage is sufficient to establish an electrostatic field between the electrodes and the filter elements, and is sufficient to produce a corona discharge from the electrodes, wherein an amount of current applied to the filter elements is about 0.1 ?A/ft2 to about 15 ?A/ft2.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: October 18, 2011
    Assignee: BHA Group, Inc.
    Inventors: Jamison W. Janawitz, Bradley S. Rogers, James Easel Roberts, Thomas Shannon Eckhoff, Robert W. Taylor
  • Publication number: 20110226284
    Abstract: A system and associated method for removing accumulated debris from a surface of a vessel. The system includes an impulse cleaning device defining a combustion chamber in which combustible fuel and air are mixed and ignited to produce combustion that is directed at the surface to be cleaned within the vessel, and an eductor assembly surrounding a downstream end of the chamber for inducting surrounding atmosphere into the combustion to widen the area being cleaned.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 22, 2011
    Applicant: General Electric Company
    Inventors: Robert Warren Taylor, David Chapin, Terry Farmer, James Easel Roberts
  • Publication number: 20110146282
    Abstract: A system and method for reducing sulfur compounds within a fuel stream for a turbomachine is presented. The system comprises: a turbomachine; a combustion system for burning a fuel including sulfur compounds, the burned fuel delivered to the turbomachine; and a sulfur compound reduction (SR) system positioned to reduce a level of the sulfur compounds in the fuel upstream of the combustion system.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: James Easel Roberts
  • Publication number: 20110061528
    Abstract: A method of reducing the concentration of pollutants in a combustion flue gas having a first temperature is provided. The method includes the step of providing an organic Rankine cycle apparatus utilizing a working fluid and including at least one heat exchanger is arranged in thermal communication with the flue gas. The method further includes the step of reducing the temperature of the flue gas to a second temperature less than the first temperature by vaporizing the working fluid within the heat exchanger utilizing thermal energy derived from the flue gas. The method further includes the step of filtering the flue gas through at least one filter disposed downstream of the heat exchanger to remove pollutants from the flue gas. An associated system configured to reduce the concentration of pollutants in the combustion flue gas is also provided.
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Applicant: BHA Group, Inc.
    Inventors: Robert Warren Taylor, James Easel Roberts, Charles Michael Booth
  • Publication number: 20110048002
    Abstract: An exhaust gas recirculation (EGR) system and a method for recirculating an exhaust gas stream from an outlet to an inlet of a turbomachine are provided. The EGR system includes a guide element to channel the exhaust gas stream from the inlet to the outlet and a Rankine cycle system through which a working fluid is circulated. The Rankine cycle system including serially a high temperature heat exchanger in heat exchange relationship with the guide element; an expansion device coupled to a generator; a low temperature heat exchanger in heat exchange relationship with a cooling medium; and a pump. The exhaust stream at the outlet has a first temperature and the exhaust stream downstream of the high temperature heat exchanger has a second temperature that is lower than the first temperature.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Applicant: BHA Group, Inc.
    Inventors: Robert Warren Taylor, James Easel Roberts
  • Patent number: 7837962
    Abstract: A method of reducing particulate matter and mercury emissions in a combustion flue gas includes, in an exemplary embodiment, combusting a fuel resulting in generation a flue gas flow, cooling the flue gas flow within a duct, positioning a flow conditioning apparatus within the duct, enhancing a reaction rate of the mercury and carbon-containing fly ash particles by directing the flue gas flow through the flow conditioning apparatus to mix the carbon-containing fly ash particles and mercury within the flue gas flow and to facilitate at least one of oxidation of the mercury and binding the mercury to the carbon-containing fly ash particles, collecting a portion of the carbon-containing fly ash particles in the flow conditioning apparatus, and directing the flue gas flow to a particulate collection device to remove the remaining portion of the fly ash particles from flue gas flow.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: November 23, 2010
    Assignee: General Electric Company
    Inventors: Boris Nikolaevich Eiteneer, Robert Warren Taylor, Vitali Lissianski, James Easel Roberts
  • Publication number: 20100175389
    Abstract: An inlet air filtration system for a gas turbine includes, in an exemplary embodiment, an air plenum, and a plurality of filter elements mounted inside the air plenum, with each filter element including a support structure. The inlet air filtration system also includes a plurality of electrodes positioned proximate the plurality of filter elements, where the electrodes are coupled to a power source which supplies a voltage to the electrodes. The voltage is sufficient to establish an electrostatic field between the electrodes and the filter elements, and is sufficient to produce a corona discharge from the electrodes, wherein an amount of current applied to the filter elements is about 0.1 ?A/ft2 to about 15 ?A/ft2.
    Type: Application
    Filed: March 23, 2010
    Publication date: July 15, 2010
    Inventors: Jamison W. Janawitz, Bradley S. Rogers, James Easel Roberts, Thomas Shannon Eckhoff, Robert W. Taylor
  • Patent number: 7695551
    Abstract: An inlet air filtration system for a gas turbine includes, in an exemplary embodiment, an air plenum, and a plurality of filter elements mounted inside the air plenum, with each filter element including a support structure. The inlet air filtration system also includes a plurality of electrodes positioned proximate the plurality of filter elements, where the electrodes are coupled to a power source which supplies a voltage to the electrodes. The voltage is sufficient to establish an electrostatic field between the electrodes and the filter elements, and at the same time, the voltage is sufficient to produce a corona discharge from the electrodes.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: April 13, 2010
    Assignee: BHA Group, Inc.
    Inventors: Jamison W. Janawitz, Bradley S. Rogers, James Easel Roberts, Thomas Shannon Eckhoff
  • Patent number: 7655068
    Abstract: A method to facilitate improving electrostatic precipitator performance is provided. The method includes providing an electrostatic precipitator including an inlet, a collector chamber and an outlet, where the collector chamber includes a plurality of discharge electrodes and a plurality of collector electrodes. The method also includes defining a respective discharge electrode V-I performance for each of the plurality of discharge electrodes, identifying a particle removal characteristic for each respective discharge electrode based on the respective discharge electrode V-I performance for each of the plurality of discharge electrodes and positioning each of the plurality of discharge electrodes in the electrostatic precipitator according to the particle removal characteristic for each respective discharge electrode.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: February 2, 2010
    Assignee: General Electric Company
    Inventors: David Johnston, James Easel Roberts, Robert Warren Taylor, Yingneng Zhou, Abdelkrim Younsi, Jennifer Lynn Molaison, Wei Wu
  • Publication number: 20090235848
    Abstract: A method of reducing particulate matter and mercury emissions in a combustion flue gas includes, in an exemplary embodiment, combusting a fuel resulting in generation a flue gas flow, cooling the flue gas flow within a duct, positioning a flow conditioning apparatus within the duct, enhancing a reaction rate of the mercury and carbon-containing fly ash particles by directing the flue gas flow through the flow conditioning apparatus to mix the carbon-containing fly ash particles and mercury within the flue gas flow and to facilitate at least one of oxidation of the mercury and binding the mercury to the carbon-containing fly ash particles, collecting a portion of the carbon-containing fly ash particles in the flow conditioning apparatus, and directing the flue gas flow to a particulate collection device to remove the remaining portion of the fly ash particles from flue gas flow.
    Type: Application
    Filed: March 24, 2008
    Publication date: September 24, 2009
    Inventors: Boris Nikolaevich Eiteneer, Robert Warren Taylor, Vitali Lissianski, James Easel Roberts
  • Publication number: 20090229468
    Abstract: An inlet air filtration system for a gas turbine includes, in an exemplary embodiment, an air plenum, and a plurality of filter elements mounted inside the air plenum, with each filter element including a support structure. The inlet air filtration system also includes a plurality of electrodes positioned proximate the plurality of filter elements, where the electrodes are coupled to a power source which supplies a voltage to the electrodes. The voltage is sufficient to establish an electrostatic field between the electrodes and the filter elements, and at the same time, the voltage is sufficient to produce a corona discharge from the electrodes.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 17, 2009
    Inventors: Jamison W. Janawitz, Bradley S. Rogers, James Easel Roberts, Thomas Shannon Eckhoff
  • Patent number: 7527674
    Abstract: An inlet air treatment system for a gas turbine includes, in an exemplary embodiment, an air plenum, and a moisture removal system, and an air filtration system located downstream from the moisture removal system. The moisture removal system includes a plurality of S-shaped vanes, and a mesh structure downstream from the plurality of S-shaped vanes. The air filtration system includes a plurality of filter elements, with each filter element including a support structure. The inlet air filtration system also includes a plurality of electrodes positioned proximate the plurality of filter elements, where the electrodes are coupled to a power source which supplies a voltage to the electrodes. The voltage is sufficient to establish an electrostatic field between the electrodes and the filter elements, and at the same time, the voltage is sufficient to produce a corona discharge from the electrodes.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: May 5, 2009
    Assignee: BHA Group, Inc.
    Inventors: Jamison W. Janawitz, Bradley S. Rogers, James Easel Roberts, Thomas Shannon Eckhoff
  • Publication number: 20080307974
    Abstract: A method to facilitate improving electrostatic precipitator performance is provided. The method includes providing an electrostatic precipitator including an inlet, a collector chamber and an outlet, where the collector chamber includes a plurality of discharge electrodes and a plurality of collector electrodes. The method also includes defining a respective discharge electrode V-I performance for each of the plurality of discharge electrodes, identifying a particle removal characteristic for each respective discharge electrode based on the respective discharge electrode V-I performance for each of the plurality of discharge electrodes and positioning each of the plurality of discharge electrodes in the electrostatic precipitator according to the particle removal characteristic for each respective discharge electrode.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 18, 2008
    Inventors: David Johnston, James Easel Roberts, Robert Warren Taylor, Yingneng Zhou, Abdelkrim Younsi, Jennifer Lynn Molaison, Wei Wu