Patents by Inventor James Edward Carey, III

James Edward Carey, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8080467
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: December 20, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: James Edward Carey, III, Eric Mazur
  • Patent number: 7504702
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 17, 2009
    Assignee: President & Fellows of Harvard College
    Inventors: Eric Mazur, James Edward Carey, III
  • Patent number: 7390689
    Abstract: Methods and systems for absorbing infrared light, and for emitting current are described. A sample, such as a sample containing mainly silicon, is microstructured by at least one laser pulse to produce cone-like structures on the exposed surface. Such microstructuring enhances the infrared absorbing, and current emission properties of the sample.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: June 24, 2008
    Assignee: President and Fellows of Harvard College
    Inventors: Eric Mazur, James Edward Carey, III, Catherine H. Crouch, Rebecca Jane Younkin, Claudia Wu
  • Patent number: 7354792
    Abstract: The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: April 8, 2008
    Assignee: President and Fellows of Harvard College
    Inventors: James Edward Carey, III, Eric Mazur
  • Patent number: 7057256
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: June 6, 2006
    Assignee: President & Fellows of Harvard College
    Inventors: James Edward Carey, III, Eric Mazur