Patents by Inventor James H. Beech, Jr.

James H. Beech, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7790941
    Abstract: The invention concerns methods and systems for minimizing back-mixing of feedstock flow in converting oxygenates to olefins. In one embodiment, back-mixing is reduced by providing a reactor that includes baffles to reduce the hydraulic diameter of at least a portion of the reactor. Some or all of the baffles can also serve as cooling tubes for reducing temperature gradients in the reactor, and thereby maximize light olefin production.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: September 7, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Nicolas Coute, Jeffrey S. Smith, Michael Peter Nicoletti, Charles O. Bolthrunis, Domenic C. Ferrari, Umesh K. Jayaswal, Roy Walter Silverman
  • Patent number: 7781362
    Abstract: Degradation of catalyst activity for silicoaluminophosphate catalysts is minimized for oxygenate-to-olefin reaction systems that are exposed to airborne salt concentrations above a threshold value. When airborne salt concentrations above the threshold value are detected, an air intake flow can be diverted into a cleaning flow path and/or an alternative source of regeneration media can be provided.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Christopher David William Jenkins
  • Patent number: 7767870
    Abstract: A gas-solids reaction system with termination devices to connect a riser with one or more separation devices. The termination devices have a radius of curvature that is at least 1.0 times as great as the diameter of the conduit forming the termination device. The termination devices can be openly or closely coupled to the separation devices.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rutton D. Patel, Arun K. Sharma, E. Nicholas Jones, James H. Beech, Jr., Richard E. Walter, Donald F. Shaw, Kenneth R. Clem, Nicolas P. Coute
  • Patent number: 7687675
    Abstract: This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen N. Vaughn, Kenneth R. Clem, James H. Beech, Jr., Peter Nicholas Loezos, Richard B. Hall, Jesse Frederick Goellner
  • Patent number: 7626067
    Abstract: The present invention is a process for cleaning and using byproduct water from an oxygenate to olefin process to satisfy the water requirement of the oxygenate to olefin process.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: December 1, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Zhong Yi Ding, James H. Beech, Jr., Michael P. Nicoletti
  • Patent number: 7619128
    Abstract: This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 17, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen Neil Vaughn, Kenneth R. Clem, James H. Beech, Jr., Pete N. Loezos
  • Patent number: 7598197
    Abstract: This invention provides processes, systems and devices for cooling catalyst, preferably regenerated catalyst, by superheating steam and boiling water. The inventive process advantageously provides ideal cooling conditions while ensuring minimal hydrothermal deactivation of the catalyst during the cooling process. The invention is particularly well-suited for cooling catalyst in an oxygenate to olefins reaction system.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: October 6, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Christopher L. Becker, James H. Beech, Jr.
  • Publication number: 20090192341
    Abstract: This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. Specifically this invention relates to a method for controlling regenerator temperature in an oxygenates-to-olefins system, comprising the steps of: contacting an oxygenate feed in a reactor with a catalytically effective amount of molecular sieve-containing catalyst under conditions effective for converting said oxygenate to a product containing light olefins and forming a coked catalyst; contacting a portion of the coked catalyst in a regenerator, having a catalyst bed height (Hc), an inlet height (Hi), and an outlet height (Ho), with an oxygen-containing regeneration medium under conditions effective to at least partially regenerate the coked catalyst; and conducting a portion of the catalyst from the regenerator to a catalyst cooler to form a cooled catalyst portion, wherein Ho is greater than Hi.
    Type: Application
    Filed: March 31, 2008
    Publication date: July 30, 2009
    Inventors: James H. Beech, JR., Chunshe Cao, Michael P. Nicoletti, James R. Lattner, Jesse F. Goellner, Rutton D. Patel, Timothy M. Healy
  • Patent number: 7479468
    Abstract: This invention provides an integrated system and process for forming light olefins and polymers from oxygenates, and optionally from natural gas. The integrated system includes an air separation unit, which separates air components into an oxygen stream and a nitrogen stream, and which also forms a compressed air stream. According to the present invention, the oxygen stream, the nitrogen stream and/or the compressed air stream from the air separation unit may serve as a reactant in syngas generation, as a regeneration medium in the methanol-to-olefins reaction system, as a fluidizing stream, as a blanketing medium, as a stripping medium, as instrument air, and/or as a reactant in a sulfur removal unit.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: January 20, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. van Egmond, Eric D. Nelson, Lawrence C. Smith, Ronald G. Searle, James H. Beech, Jr., Michael P. Nicoletti
  • Patent number: 7462211
    Abstract: A multi-stage gas-solids separator having at least 4 stages is configured so that the penultimate stage of separators is operated in an underflow condition. The underflow from the penultimate stage is used as the input flow for the final stage of separators. The multi-stage separator is preferably composed of cyclone separators, with the final two stages of separators housed in external disengaging vessels.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: December 9, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Richard E. Walter
  • Patent number: 7459595
    Abstract: This invention provides processes for transporting catalyst, preferably in an oxygenate to olefins reaction system. In one embodiment, an oxygenate contacts molecular sieve catalyst particles in a reactor under conditions effective to form an effluent stream comprising light olefins and forming coked catalyst particles. At least a portion of the coked catalyst particles are transported from the reactor or a device associated therewith to a catalyst regenerator through a conduit in a fluidized manner with a fluidizing medium comprising air and steam. At least a portion of the coked catalyst particles are regenerated in the catalyst regenerator to form regenerated catalyst particles, which are ultimately directed back to the reactor.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: December 2, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., James R. Lattner, Richard E. Walter
  • Patent number: 7452838
    Abstract: This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. In one embodiment, the invention includes mixing spent catalyst from a reactor and cold catalyst from a catalyst cooler in a mixing zone and directing the mixed catalyst to the regeneration zone in a fluidized manner with a fluidizing medium. In the regeneration zone, the mixed catalyst contacts an oxygen-containing regeneration medium under conditions effective to regenerate the spent catalyst contained therein.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: November 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Brian A. Cunningham, Todd R. Steffens, James H. Beech, Jr., Richard E. Walter
  • Patent number: 7414166
    Abstract: This invention provides feed introduction devices, and processes for using same, which minimize catalyst clogging. In particular, the invention is to a feed introduction device having a first end in fluid communication with a feed source, a second end in fluid communication with a reactor and a deviation zone between the first end and the second end to deviate the flow of feed about a deviation angle from the first end toward the second end. According to the invention, the deviation angle is greater than 90 degrees.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: August 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Brian A. Cunningham, Christopher G. Smalley, Rathna P. Davuluri
  • Patent number: 7404891
    Abstract: A technique for recovering heat from a high temperature effluent stream from catalyst regeneration or the like, comprising processes and means for: (a) passing the effluent stream in heat exchange relationship in a steam generator with boiler feed water to produce high pressure steam and partially cool the effluent stream; (b) passing the partially cooled effluent stream from the steam regenerator in heat exchange relationship to preheat high pressure boiler feed water and further cool the effluent stream; and (c) passing the preheated boiler feed water to the steam generator. The apparatus and processes for thermal energy recovery may be used to treat hot regenerator effluent from FCC or OTO-type processes, thereby producing a cooled flue gas stream to discharge to ambient atmosphere.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: July 29, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. van Egmond, James H. Beech, Jr., Hans A. Klemm, Kyle Castaldy
  • Patent number: 7385100
    Abstract: This invention is directed to removing contaminants from an oxygenate-containing feedstream for an oxygenate to olefin reaction system. Oxygenate feeds used in the conversion of oxygenates to olefins, and which contain contaminants, are heated to form a vapor stream and a liquid stream. The heating is conducted so that a majority of the metalloaluminophosphate molecular sieve catalyst contaminants is contained in the liquid stream. The vapor stream is separated from the liquid stream, and the separated vapor stream is contacted with the metalloaluminophosphate molecular sieve catalyst to form olefin product. The heating of the feedstream and the separation of the vapor stream can be carried out in one or more stages.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: June 10, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Cor F. Van Egmond, Ronald G. Searle, Michael Peter Nicoletti, David Ritchie Lumgair, Jr.
  • Patent number: 7329309
    Abstract: A multi-stage gas-solids separator is configured so that the higher density (solids) output flows of two or more of the separator stages are merged together. The multi-stage separator is preferably composed of cyclone separators, with the diplegs of at least two of the cyclone separator stages merged together.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: February 12, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey S. Smith, James H. Beech, Jr., Nicolas P. Coute, Jesse F. Goellner, Kenneth Ray Clem
  • Patent number: 7323147
    Abstract: A feed vaporization process and apparatus for oxygenate to olefin conversion is provided which uses a vapor-liquid disengaging drum to separate non-volatiles and/or partial non-volatiles from volatiles in the oxygenate feed and produce a vaporized effluent that is reduced in non-volatiles and/or partial non-volatiles while at the same time maintaining the effluent at optimal temperature and pressure as a feed for oxygenate to olefin conversion.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: January 29, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Ritchie Lumgair, Jr., James H. Beech, Jr., Michael Peter Nicoletti
  • Patent number: 7309383
    Abstract: Catalyst losses are prevented in riser reactor systems by using a low inlet velocity for the first cyclone separator in each multi-stage cyclone separator in the reactor. Catalyst particles not separated from the product output flow in an oxygenate-to-olefin reactor are also recaptured by cooling the product output flow and passing the flow through an electrostatic precipitator.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: December 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., James R. Lattner, Nicolas P. Coute, Jeff S. Smith
  • Patent number: 7223714
    Abstract: The invention is directed to methods of transfering catalyst particles into and within reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The transfer methods provide appropriate mechanisms for transporting catalyst into and within a reactor to protect against loss of catalytic activity that can occur due to contact with water molecules.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: May 29, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Neil Vaughn Stephen, Teng Xu, Luc R. M. Martens, Richard E. Walter
  • Patent number: 7214843
    Abstract: This invention is directed to removing contaminants from an oxygenate-containing feedstream for an oxygenate to olefin reaction system. Oxygenate feeds used in the conversion of oxygenates to olefins, and which contain contaminants, are heated to form a vapor stream and a liquid stream. The heating is conducted so that a majority of the metalloaluminophosphate molecular sieve catalyst contaminants is contained in the liquid stream. The vapor stream is separated from the liquid stream, and the separated vapor stream is contacted with the metalloaluminophosphate molecular sieve catalyst to form olefin product. The heating of the feedstream and the separation of the vapor stream can be carried out in one or more stages.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: May 8, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Cor. F. Van Egmond, Ronald G. Searle, Michael Peter Nicoletti, David Ritchie Lumgair, Jr.