Patents by Inventor James H. Brauker

James H. Brauker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210045665
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: November 3, 2020
    Publication date: February 18, 2021
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, JR., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin
  • Patent number: 10918318
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: February 16, 2021
    Assignee: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker, Aarthi Mahalingam
  • Patent number: 10918316
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 16, 2021
    Assignee: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker, Aarthi Mahalingam
  • Patent number: 10918317
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 16, 2021
    Assignee: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20210038136
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 11, 2021
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20210030956
    Abstract: Systems and methods for integrating a continuous glucose sensor 12, including a receiver 14, a medicament delivery device 16, a controller module, and optionally a single point glucose monitor 18 are provided. Integration may be manual, semi-automated and/or fully automated.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: John Michael Dobbles, Apurv Ullas Kamath, Aarthi Mahalingam, James H. Brauker
  • Publication number: 20210022653
    Abstract: Biointerface membranes are provided which can be utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device incorporating such membranes are provided.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 28, 2021
    Inventors: James H. Brauker, Robert J. Boock, Monica A. Rixman, Peter C. Simpson, Mark C. Brister, Mark C. Shults
  • Patent number: 10898114
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: January 26, 2021
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, James H. Brauker, Paul V. Goode, Jr., Aarthi Mahalingam, Jack Pryor
  • Patent number: 10898113
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 26, 2021
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria E. Carr-Brendel, Paul V. Goode, Jr., Apurv Ullas Kamath, James Patrick Thrower, Ben Xavier
  • Publication number: 20200405202
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Application
    Filed: July 15, 2020
    Publication date: December 31, 2020
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv Ullas Kamath, James Patrick Thrower
  • Patent number: 10856787
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: December 8, 2020
    Assignee: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20200375515
    Abstract: A biointerface membrane for an implantable device including a nonresorbable solid portion with a plurality of interconnected cavities therein adapted to support tissue ingrowth in vivo, and a bioactive agent incorporated into the biointerface membrane and adapted to modify the tissue response is provided. The bioactive agents can be chosen to induce vascularization and/or prevent barrier cell layer formation in vivo, and are advantageous when used with implantable devices wherein solutes are transported across the device-tissue interface.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Mark Shults, James H. Brauker, Victoria Carr-Brendel, Mark Tapsak, Dubravka Markovic
  • Publication number: 20200367794
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: July 8, 2020
    Publication date: November 26, 2020
    Inventors: Peter C. Simpson, James H. Brauker, Mark C. Brister, Paul V. Goode, Jr., Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Matthew D. Wightlin
  • Publication number: 20200359945
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20200359946
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20200359947
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Apurv Ullas Kamath, Jack Pryor, Paul V. Goode, JR., James H. Brauker, Aarthi Mahalingam
  • Publication number: 20200359949
    Abstract: The present invention relates generally to biointerface membranes utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, the invention relates to novel biointerface membranes, to devices and implantable devices including these membranes, methods for forming the biointerface membranes on or around the implantable devices, and to methods for monitoring glucose levels in a biological fluid sample using an implantable analyte detection device.
    Type: Application
    Filed: July 14, 2020
    Publication date: November 19, 2020
    Inventors: James H. Brauker, Peter C. Simpson, Robert J. Boock, Monica Rixman Swinney, Mark C. Brister
  • Patent number: 10835672
    Abstract: Systems and methods for integrating a continuous glucose sensor 12, including a receiver 14, a medicament delivery device 16, a controller module, and optionally a single point glucose monitor 18 are provided. Integration may be manual, semi-automated and/or fully automated.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: November 17, 2020
    Assignee: DexCom, Inc.
    Inventors: John Michael Dobbles, Apurv Ullas Kamath, Aarthi Mahalingam, James H. Brauker
  • Patent number: 10835161
    Abstract: A transcutaneous sensor device configured for continuously measuring analyte concentrations in a host is provided. In some embodiments, the transcutaneous sensor device 100 comprises an in vivo portion 160 configured for insertion under the skin 180 of the host and an ex vivo portion 170 configured to remain above the surface of the skin 180 of the host after sensor insertion of the in vivo portion. The in vivo portion may comprise a tissue piercing element 110 configured for piercing the skin 180 of the host and a sensor body 120 comprising a material or support member 130 that provides sufficient column strength to allow the sensor body to be pushable in a host tissue without substantial buckling. The ex vivo portion 170 may be configured to comprise (or operably connect to) a sensor electronics unit and may comprise a mounting unit 150. Also described here are various configurations of the sensor body and the tissue piercing element that may be used to protect the membrane of the sensor body.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: November 17, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Sebastian Böhm, James H. Brauker, Paul V. Neale
  • Publication number: 20200352483
    Abstract: The present invention relates generally to variable stiffness transcutaneous medical devices including a distal portion designed to be more flexible than a proximal portion. The variable stiffness can be provided by a variable pitch in one or more wires of the device, a variable cross-section in one or more wires of the device, and/or a variable hardening and/or softening in one or more wires of the device.
    Type: Application
    Filed: July 29, 2020
    Publication date: November 12, 2020
    Inventors: Mark C. Brister, James H. Brauker