Patents by Inventor James H. White

James H. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8435920
    Abstract: Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) CexByB?zB?O?, wherein B=Ba, Sr, Ca, or Zr; B?=Mn, Co, and/or Fe; B?=Cu; 0.01<x<0.99; 0<y<0.6; 0<z<0.5; (b) Ce1-x-yNixByO2-*, wherein B=Zr, Ba, Ca, La, or K; 0.02<x<0.1; 0<y<0.1; and 0.02<*<0.15; and 1<?<2.2 and (c) coal ash either as a catalyst material itself or as a support for said unary or binary metal oxides.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: May 7, 2013
    Assignee: Eltron Research & Development, Inc.
    Inventors: James H. White, Erick J. Schutte, Sara L. Rolfe
  • Patent number: 7988766
    Abstract: Provided herein are adsorbents and methods of using the adsorbents to at least partially remove one or more adsorbates. In an aspect, an adsorbate within a phase is at least partially removed by providing an adsorbent material and contacting the adsorbent material with the phase having an adsorbate, to at least partially remove the adsorbate. Various adsorbents are disclosed having the chemical formula RE1-x-y-zBxB?yB?zOw, where RE is RE is a rare earth metal, B is a trivalent metal ion, B? is a transition metal ion or an alkaline earth element, B? is a transition metal ion, 0?x?0.25, 0?y?0.95, 0?z?0.75, w is a number which results in charge balance, and x+y+z<1.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: August 2, 2011
    Assignee: Eltron Research & Development Inc.
    Inventors: James H. White, Jesse W. Taylor
  • Publication number: 20110024687
    Abstract: Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) CexByB?zB?O?, wherein B?Ba, Sr, Ca, or Zr; B??Mn, Co, and/or Fe; B??Cu; 0.01<x<0.99; 0<y<0.6; 0<z<0.5; (b) Ce1-x-yNixByO2-*, wherein B?Zr, Ba, Ca, La, or K; 0.02<x<0.1; 0<y<0.1; and 0.02<*<0.15; and 1<?<2.2 and (c) coal ash either as a catalyst material itself or as a support for said unary or binary metal oxides.
    Type: Application
    Filed: October 11, 2010
    Publication date: February 3, 2011
    Applicant: ELTRON RESEARCH & DEVELOPMENT, INC.
    Inventors: James H. White, Erick J. Schutte, Sara L. Rolfe
  • Patent number: 7824574
    Abstract: Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) CexByB?zB?O?, wherein B=Ba, Sr, Ca, or Zr; B?=Mn, Co, or Fe; B?=Cu; 0.01<x<0.99; 0<y<0.6; 0<z<0.5; and 1<?<2.2; (b) SrvLawBxB?yB?zO?, wherein B=Co or Fe; B?=Al or Ga; B?=Cu; 0.01<v<1.4; 0.1<w<1.6; 0.1<x<1.9; 0.1<y<0.9; 0<z<2.2; and 3<?<5.5).
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: November 2, 2010
    Assignee: Eltron Research & Development
    Inventors: James H. White, Erick J. Schutte, Sara L. Rolfe
  • Patent number: 7590570
    Abstract: An apparatus, system, and method are provided for receiving requirements information from a user via a web browser. The request and the requirements information are received by a web server and forwarded to a correlation engine. The correlation engine is operatively connected to, among other things, a catalog database listing various products that are available to the user, a pricing database that contains price information for a plurality of the products, an advisor database that contains feature information about the products, and a client relationship manager that retains information about the user. The correlation engine correlates the data from the various database through appropriate function modules in order to determine which product best suits the user's requirements based on price, availability, and feature set. The user is presented with a coherent set of choices and is thus enabled to select one or more items from those choices to consummate a sale for the products.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: September 15, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Allen Ray Harrison, Bruce Alan Oney, Murli Challappa, James H. White
  • Publication number: 20090134008
    Abstract: Provided herein are adsorbents and methods of using the adsorbents to at least partially remove one or more adsorbates. In an aspect, an adsorbate within a phase is at least partially removed by providing an adsorbent material and contacting the adsorbent material with the phase having an adsorbate, to at least partially remove the adsorbate. Various adsorbents are disclosed having the chemical formula RE1-x-y-zBxB?yB?zOw, where RE is RE is a rare earth metal, B is a trivalent metal ion, B? is a transition metal ion or an alkaline earth element, B? is a transition metal ion, 0?x?0.25, 0?y?0.95, 0?z?0.75, w is a number which results in charge balance, and x+y+z<1.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 28, 2009
    Inventors: James H. White, Jesse W. Taylor
  • Publication number: 20080164443
    Abstract: Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) CexByB?zB?O?, wherein B=Ba, Sr, Ca, or Zr; B?=Mn, Co, or Fe; B?=Cu; 0.01<x<0.99; 0<y<0.6; 0<z<0.5; and 1<?<2.2; (b) SrvLawBxB?yB?zO?, wherein B=Co or Fe; B?=Al or Ga; B?=Cu; 0.01<v<1.4; 0.1<w<1.6; 0.1<x<1.9; 0.1<y<0.9; 0<z<2.2; and 3<?<5.5).
    Type: Application
    Filed: September 20, 2007
    Publication date: July 10, 2008
    Applicant: ELTRON RESEARCH & DEVELOPMENT, INC.
    Inventors: James H. White, Erick J. Schutte, Sara L. Rolfe
  • Patent number: 7393876
    Abstract: Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: July 1, 2008
    Assignee: Eltron Research, Inc.
    Inventors: James H. White, Jesse W. Taylor
  • Patent number: 7067299
    Abstract: The subject invention provides novel and advantageous methods for growing bacteria. The methods of the subject invention are particularly advantageous for growing parasitic bacteria in vitro, without the presence of host tissue. In one embodiment of the subject invention, Pasteuria endospores, such as those that infect the rootknot nematode Meloidogyne arenaria or other host nematodes, are grown in vitro under acidic conditions. The process of the subject invention is highly advantageous because Pasteuria can be grown in the absence of nematode tissue.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: June 27, 2006
    Assignees: Pasteuria Bioscience, LLC, CDG Laboratories, Inc.
    Inventors: John F. Gerber, Thomas E. Hewlett, Kelly S. Smith, James H. White
  • Patent number: 6949230
    Abstract: This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: September 27, 2005
    Assignee: Eltron Research, Inc.
    Inventors: Michael Schwartz, James H. White, Anthony F. Sammells
  • Patent number: 6919197
    Abstract: The subject invention provides novel and advantageous methods for growing bacteria. The methods of the subject invention are particularly advantageous for growing parasitic bacteria, in vitro, without the presence of host tissue. In one embodiment of the subject invention, Pasteuria spores, such as those that infect the rootknot nematode Meloidogyne arenaria or other host nematodes, are grown in vitro. The process of the subject invention is highly advantageous because Pasteuria can be grown in the absence of nematode tissue.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: July 19, 2005
    Assignee: Entomos, Inc.
    Inventors: John F. Gerber, James H. White
  • Patent number: 6787118
    Abstract: Catalyst compositions are provided that are useful in selectively removing carbon monoxide from a hydrogen-containing gas. These catalyst compositions preferably have the formula: nN/Ce1−(x+y+z)AxA′yA″zO2−&dgr;, where A, A′, A″ are independently selected from the group consisting of: Zr, Gd, La, Sc, Sr, Co, Cr, Fe, Mn, V, Ti, Cu and Ni; N is one or more members of the group consisting of: Pt, Pd, and Au; n is a weight percent between 0 and 25; x, y and z are independently 0 to 0.9; x+y+z is 0.1 to 0.9; and &dgr; is a number which renders the composition charge neutral; or nN/(MOx)y(CeO2−&dgr;)1−y, where M is one or more members of the group selected from: Zr, Co, Cr, Fe, Mn, V, Ti, Ni and Cu; N is one or more members of the group selected from: Pt, Pd, and Au; n is a weight percent between 0 and 25; y is 0.1 to 0.9; and x and &dgr; make the compositions charge neutral.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: September 7, 2004
    Assignee: Eltron Research
    Inventors: Shane E. Roark, James H. White
  • Publication number: 20040137600
    Abstract: The subject invention provides novel and advantageous methods for growing bacteria. The methods of the subject invention are particularly advantageous for growing parasitic bacteria, in vitro, without the presence of host tissue. In one embodiment of the subject invention, Pasteuria spores, such as those that infect the rootknot nematode Meloidogyne arenaria or other host nematodes, are grown in vitro. The process of the subject invention is highly advantageous because Pasteuria can be grown in the absence of nematode tissue.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 15, 2004
    Inventors: John F. Gerber, James H. White
  • Publication number: 20030232422
    Abstract: The subject invention provides novel and advantageous methods for growing bacteria. The methods of the subject invention are particularly advantageous for growing parasitic bacteria in vitro, without the presence of host tissue. In one embodiment of the subject invention, Pasteuria endospores, such as those that infect the rootknot nematode Meloidogyne arenaria or other host nematodes, are grown in vitro under acidic conditions. The process of the subject invention is highly advantageous because Pasteuria can be grown in the absence of nematode tissue.
    Type: Application
    Filed: June 11, 2003
    Publication date: December 18, 2003
    Inventors: John F. Gerber, Thomas E. Hewlett, Kelly S. Smith, James H. White
  • Patent number: 6458741
    Abstract: Catalyst compositions for destruction of volatile organic carbons (VOCs) in an oxygen-containing gas stream at low temperatures comprising: one or more first metals selected from the group consisting of: Ce and Zr; and at least one of: (a) one or more second metals selected from the group consisting of: Gd, La, Sr and Sc; (b) one or more third metals selected from the group consisting of: Ti, V, Mn, Fe, Co, Cr, Ni, Au, Ag and Cu; and (c) one or more fourth metals selected from the group consisting of Pt, Pd, Rh, Ru, Re, Os and Ir are provided. Catalyst compositions provided may be single-phase, mixed-metal oxides, or multi-phase. Catalysts of this invention have improved activity for VOC reduction at low temperatures in gaseous systems.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: October 1, 2002
    Assignee: Eltron Research, Inc.
    Inventors: Shane E. Roark, James H. White
  • Publication number: 20020114746
    Abstract: Catalyst compositions are provided that are useful in selectively removing carbon monoxide from a hydrogen-containing gas. These catalyst compositions preferably have the formula: nN/Ce1−(x+y+z)AxA′yA″zO2−&dgr;, where A, A′, A″ are independently selected from the group consisting of: Zr, Gd, La, Sc, Sr, Co, Cr, Fe, Mn, V, Ti, Cu and Ni; N is one or more members of the group consisting of: Pt, Pd, and Au; n is a weight percent between 0 and 25; x, y and z are independently 0 to 0.9; x+y+z is 0.1 to 0.9; and &dgr; is a number which renders the composition charge neutral; or nN/(MOx)y(CeO2−&dgr;)1−y, where M is one or more members of the group selected from: Zr, Co, Cr, Fe, Mn, V, Ti, Ni and Cu; N is one or more members of the group selected from: Pt, Pd, and Au; n is a weight percent between 0 and 25; y is 0.1 to 0.9; and x and &dgr; make the compositions charge neutral.
    Type: Application
    Filed: October 29, 2001
    Publication date: August 22, 2002
    Inventors: Shane E. Roark, James H. White
  • Publication number: 20020054845
    Abstract: This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
    Type: Application
    Filed: August 14, 2001
    Publication date: May 9, 2002
    Inventors: Michael Schwartz, James H. White, Anthony F. Sammells
  • Patent number: 6355093
    Abstract: This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O2, NO2, SO2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: March 12, 2002
    Assignee: Eltron Research, INC
    Inventors: Michael Schwartz, James H. White, Anthony F. Sammells
  • Patent number: 6291007
    Abstract: The subject invention provides artificial diet compositions for rearing mites, insects, and other beneficial organisms. These artificial diets are particularly advantageous because they make it possible to raise organisms efficiently and economically.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: September 18, 2001
    Assignee: Entomos, LLC
    Inventors: James H. White, Lynda A. Stauffer, Kimberly A. Gallagher
  • Patent number: 6281403
    Abstract: Mixed electron- and proton-conducting metal oxide materials are provided. These materials are useful in fabrication of membranes for use in catalytic membrane reactions, particularly for promoting dehydrogenation of hydrocarbons, oligomerization of hydrocarbons and for the decomposition of hydrogen-containing gases. Membrane materials are perovskite compounds of the formula: AB1−xB′xO3−y where A=Ca, Sr, or Ba; B=Ce, Tb, Pr or Th; B′=Ti, V, Cr, Mn, Fe, Co, Ni or Cu; 0.2≦x≦0.5, and y is a number sufficient to neutralize the charge in the mixed metal oxide material.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: August 28, 2001
    Assignee: Eltron Research, Inc.
    Inventors: James H. White, Michael Schwartz, Anthony F. Sammells