Patents by Inventor James Hugh Rogers

James Hugh Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220293452
    Abstract: Methods and apparatus for a lift pin mechanism for substrate processing chambers are provided herein. In some embodiments, the lift pin mechanism includes a lift pin comprising a shaft with a top end, a bottom end, and a coupling end at the bottom end; a bellows assembly disposed about the shaft. The bellows assembly includes an upper bellows flange having an opening for axial movement of the shaft; a bellows having a first end coupled to a lower surface of the upper bellows flange such that the shaft extends into a central volume surrounded by the bellows; and a bellows guide assembly coupled to a second end of the bellows to seal the central volume. The shaft is coupled to the bellows guide assembly at the coupling end. The bellows guide assembly is axially movable to move the lift pin with respect to the upper bellows flange.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 15, 2022
    Inventors: Alexander SULYMAN, Carlaton WONG, Rajinder DHINDSA, Timothy Joseph FRANKLIN, Steven BABAYAN, Anwar HUSAIN, James Hugh ROGERS, Xue Yang CHANG
  • Publication number: 20220165553
    Abstract: Embodiments of process kits for use in a process chamber are provided herein. In some embodiments, a process kit for use in a process chamber includes a slit door having an arcuate profile and including a first plate slidably coupled to a second plate, wherein the first plate is configured to be coupled to an actuator, wherein the second plate has an inner surface that includes silicon, and wherein the inner surface includes a plurality of grooves.
    Type: Application
    Filed: February 24, 2021
    Publication date: May 26, 2022
    Inventors: Hamid NOORBAKHSH, James Hugh ROGERS
  • Publication number: 20210391146
    Abstract: Methods and apparatus for processing a substrate are provided herein. In some embodiments, a method of processing a substrate in an etch process chamber includes: pulsing RF power from an RF bias power supply to a lower electrode disposed in a substrate support of the etch process chamber at a first frequency of about 200 kHz to about 700 kHz over a first period to create a plasma in a process volume of the etch process chamber, wherein a conductance liner surrounds the process volume to provide a ground path for an upper electrode of the etch process chamber; and pulsing RF power from the RF bias power supply to the lower electrode at a second frequency of about 2 MHz to about 13.56 MHz over the first period.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Timothy Joseph FRANKLIN, Rajinder DHINDSA, Daniel Sang BYUN, Carlaton WONG, Joseph PERRY, James Hugh ROGERS
  • Patent number: 10748748
    Abstract: A method to detect a potential fault in a plasma system is described. The method includes accessing a model of one or more parts of the plasma system. The method further includes receiving data regarding a supply of RF power to a plasma chamber. The RF power is supplied using a configuration that includes one or more states. The method also includes using the data to produce model data at an output of the model. The method includes examining the model data. The examination is of one or more variables that characterize performance of a plasma process of the plasma system. The method includes identifying the fault for the one or more variables. The method further includes determining that the fault has occurred for a pre-determined period of time such that the fault is identified as an event. The method includes classifying the event.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: August 18, 2020
    Assignee: Lam Research Corporation
    Inventors: John C. Valcore, Jr., James Hugh Rogers, Nicholas Edward Webb, Peter T. Muraoka
  • Patent number: 10312048
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 4, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Leonid Dorf, Travis Koh, Olivier Luere, Olivier Joubert, Philip A. Kraus, Rajinder Dhindsa, James Hugh Rogers
  • Publication number: 20190057847
    Abstract: A method to detect a potential fault in a plasma system is described. The method includes accessing a model of one or more parts of the plasma system. The method further includes receiving data regarding a supply of RF power to a plasma chamber. The RF power is supplied using a configuration that includes one or more states. The method also includes using the data to produce model data at an output of the model. The method includes examining the model data. The examination is of one or more variables that characterize performance of a plasma process of the plasma system. The method includes identifying the fault for the one or more variables. The method further includes determining that the fault has occurred for a pre-determined period of time such that the fault is identified as an event. The method includes classifying the event.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventors: John C. Valcore, JR., James Hugh Rogers, Nicholas Edward Webb, Peter T. Muraoka
  • Patent number: 10128090
    Abstract: A method to detect a potential fault in a plasma system is described. The method includes accessing a model of one or more parts of the plasma system. The method further includes receiving data regarding a supply of RF power to a plasma chamber. The RF power is supplied using a configuration that includes one or more states. The method also includes using the data to produce model data at an output of the model. The method includes examining the model data. The examination is of one or more variables that characterize performance of a plasma process of the plasma system. The method includes identifying the fault for the one or more variables. The method further includes determining that the fault has occurred for a pre-determined period of time such that the fault is identified as an event. The method includes classifying the event.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: November 13, 2018
    Assignee: Lam Research Corporation
    Inventors: John C. Valcore, Jr., James Hugh Rogers, Nicholas Edward Webb, Peter T. Muraoka
  • Publication number: 20180166249
    Abstract: Systems and methods for creating arbitrarily-shaped ion energy distribution functions using shaped-pulse-bias. In an embodiment, a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and modulating the amplitude of the wafer voltage to produce a predetermined number of pulses to determine an ion energy distribution function. In another embodiment a method includes applying a positive jump voltage to an electrode of a process chamber to neutralize a wafer surface, applying a negative jump voltage to the electrode to set a wafer voltage, and applying a ramp voltage to the electrode that overcompensates for ion current on the wafer or applying a ramp voltage to the electrode that undercompensates for ion current on the wafer.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 14, 2018
    Inventors: Leonid DORF, Travis KOH, Olivier LUERE, Olivier JOUBERT, Philip A. KRAUS, Rajinder DHINDSA, JAMES HUGH ROGERS
  • Publication number: 20170358431
    Abstract: Systems and methods for controlling a voltage waveform at a substrate during plasma processing include applying a shaped pulse bias waveform to a substrate support, the substrate support including an electrostatic chuck, a chucking pole, a substrate support surface and an electrode separated from the substrate support surface by a layer of dielectric material. The systems and methods further include capturing a voltage representative of a voltage at a substrate positioned on the substrate support surface and iteratively adjusting the shaped pulse bias waveform based on the captured signal. In a plasma processing system a thickness and a composition of a layer of dielectric material separating the electrode and the substrate support surface can be selected such that a capacitance between the electrode and the substrate support surface is at least an order of magnitude greater than a capacitance between the substrate support surface and a plasma surface.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 14, 2017
    Inventors: LEONID DORF, JAMES HUGH ROGERS, OLIVIER LUERE, TRAVIS KOH, RAJINDER DHINDSA, SUNIL SRINIVASAN
  • Publication number: 20150069912
    Abstract: A method to detect a potential fault in a plasma system is described. The method includes accessing a model of one or more parts of the plasma system. The method further includes receiving data regarding a supply of RF power to a plasma chamber. The RF power is supplied using a configuration that includes one or more states. The method also includes using the data to produce model data at an output of the model. The method includes examining the model data. The examination is of one or more variables that characterize performance of a plasma process of the plasma system. The method includes identifying the fault for the one or more variables. The method further includes determining that the fault has occurred for a pre-determined period of time such that the fault is identified as an event. The method includes classifying the event.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: John C. Valcore, JR., James Hugh Rogers, Nicholas Edward Webb, Peter T. Muraoka