Patents by Inventor James J. Stone

James J. Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957577
    Abstract: Embodiments of delivery systems, devices and methods for delivering a prosthetic heart valve device to a heart chamber for expanded implementation are disclosed. More specifically, methods, systems and devices are disclosed for delivering a self-expanding prosthetic mitral valve device to the left atrium, with no engagement of the left ventricle, the native mitral valve leaflets or the annular tissue downstream of the upper annular surface during delivery, and in some embodiments with no engagement of the ventricle, mitral valve leaflets and/or annular tissue located downstream of the upper annular surface by the delivered, positioned and expanded prosthetic mitral valve device.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: April 16, 2024
    Assignee: 4C Medical Technologies, Inc.
    Inventors: Jeffrey W. Chambers, Gregory G. Brucker, Joseph P. Higgins, Saravana B. Kumar, Jason S. Diedering, Karl A. Kabarowski, Robert J. Thatcher, James E. Flaherty, Jeffrey R. Stone
  • Patent number: 11925804
    Abstract: A first medical device for obstructive sleep apnea therapy includes therapy delivery circuitry coupled to a first set of electrodes implantable proximate to a first hypoglossal nerve within a tongue of the patient and configured to deliver a first electrical stimulation signal to the first hypoglossal nerve that causes the tongue of the patient to advance and includes information to communicate to a second medical device implantable within the head or neck of the patient and coupled to a second set of electrodes implantable proximate to a second hypoglossal nerve within the tongue of the patient; and sensing circuitry coupled to the first set of electrodes and configured to receive a second electrical stimulation signal, delivered to the second hypoglossal nerve by the second medical device, that includes information that the second medical device communicates to the first medical device.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: March 12, 2024
    Assignee: Medtronic Xomed, LLC
    Inventors: Jeffrey P. Bodner, Avram Scheiner, Phillip C. Falkner, James Britton Hissong, Walton W. Baxter, III, Richard T. Stone, Robert T. Sandgren, Ryan B. Sefkow, Adam J. Rivard
  • Patent number: 7282105
    Abstract: Miniature planar IR waveguides of thickness 30–50 ?m, consisting of 12-mm long, 2-mm wide strips of Ge supported on ZnS substrates and tapered quasi-tapered waveguides, tapered from a thickness of 1 mm at the ends to a minimum of 1–100 ?m at the center, are disclosed. The surface sensitivity is increased as a function of incidence or bevel angle. The tapered waveguide improves the efficiency of the optical coupling both into the waveguide from an FTIR spectrometer, and out of the waveguide onto a small-area IR detector. The tapering makes it possible to dispense with using an IR microscope couple light through the waveguide, enabling efficient coupling with a detector directly coupled to an immersion lens. This optical arrangement makes such thin supported waveguides more useful as sensors, because they can be made quite long (e.g. 50 mm) and mounted horizontally.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: October 16, 2007
    Inventors: Susan E. Plunkett, James J. Stone, Mark Stephen Braiman
  • Patent number: 6496636
    Abstract: Miniature planar IR waveguides of thickness 30-50 &mgr;m, consisting of 12-mm long, 2-mm wide strips of Ge supported on ZnS substrates and tapered quasi-tapered waveguides, tapered from a thickness of 1 mm at the ends to a minimum of 1-100 &mgr;m at the center, are disclosed. The surface sensitivity is increased as a function of incidence or bevel angle. The tapered waveguide improves the efficiency of the optical coupling both into the waveguide from an FTIR spectrometer, and out of the waveguide onto a small-area IR detector. The tapering makes it possible to dispense with using an IR microscope couple light through the waveguide, enabling efficient coupling with a detector directly coupled to an immersion lens. This optical arrangement makes such thin supported waveguides more useful as sensors, because they can be made quite long (e.g. 50 mm) and mounted horizontally.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: December 17, 2002
    Inventors: Mark Stephen Braiman, Susan E. Plunkett, James J. Stone
  • Patent number: 5980831
    Abstract: We have fabricated miniature planar IR waveguides of thickness 30-50 .mu.m, consisting of 12-mm long, 2-mm wide strips of Ge supported on ZnS substrates. Evidence for efficient propagation of broadband IR light through these waveguides is provided by the presence of characteristic high and low frequency optical cut-offs of Ge; by the observation of an oscillatory interference pattern in the transmittance spectrum, which exhibits a dependence on waveguide thickness and propagation angle closely matching waveguide theory; and by the detection of strong evanescent-wave absorption from small (2 mm.sup.2) droplets of liquid, e.g. water, on the waveguide surface. As also predicted by theory, the surface sensitivity (detected light absorbance per unit area of sample-waveguide contact) was shown to increase as a function of incidence or bevel angle.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: November 9, 1999
    Inventors: Mark S. Braiman, Susan E. Plunkett, James J. Stone