Patents by Inventor James Jay McMahon

James Jay McMahon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230366913
    Abstract: A photonic integrated circuit including a substrate, a plurality of oxide layers on the substrate, and various passive and active integrated optical components in the plurality of oxide layers. The integrated optical components include silicon nitride waveguides, a Pockets effect phase shifter (e.g., BaTiO3 phase shifter), a superconductive nanowire single photon detector (SNSPD), an optical isolation structure surrounding the SNSPD, a single photon generator, a thermal isolation structure, a heater, a temperature sensor, a photodiode for data communication (e.g., a Ge photodiode), or a combination thereof.
    Type: Application
    Filed: September 28, 2021
    Publication date: November 16, 2023
    Inventors: Vimal KAMINENI, Nicholas V. LICAUSI, Ann MELNICHUK, James Jay MCMAHON, Henrik JOHANSSON, Alexey VERT
  • Patent number: 10573593
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to metal interconnect structures for super (skip) via integration and methods of manufacture. The structure includes: a first wiring layer with one or more wiring structures; a second wiring layer including an interconnect and wiring structure; and at least one upper wiring layer with one or more via interconnect and wiring structures located above the second wiring layer. The one or more via interconnect and wiring structures partially including a first metal material and remaining portions with a conductive material over the first metal material. A skip via passes through the second wiring layer and extends to the one or more wiring structures of the first wiring layer. The skip via partially includes the metal material and remaining portions of the skip via includes the conductive material over the first metal material.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: February 25, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sean Xuan Lin, Xunyuan Zhang, Shao Beng Law, James Jay McMahon
  • Patent number: 10541338
    Abstract: The subject matter disclosed herein relates to silicon carbide (SiC) power devices and, more specifically, to SiC super-junction (SJ) power devices. A SiC-SJ device includes a plurality of SiC semiconductor layers of a first conductivity-type, wherein a first and a second SiC semiconductor layer of the plurality of SiC semiconductor layers comprise a termination region disposed adjacent to an active region with an interface formed therebetween, an act wherein the termination region of the first and the second SiC semiconductor layers comprises a plurality of implanted regions of a second conductivity-type, and wherein an effective doping profile of the termination region of the first SiC semiconductor layer is different from an effective doping profile of the termination region of the second SiC semiconductor layer.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: January 21, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld, James Jay McMahon
  • Patent number: 10186509
    Abstract: A power transistor assembly and method of operating the assembly are provided. The power transistor assembly includes integrated transient voltage suppression on a single semiconductor substrate and includes a transistor formed of a wide band gap material, the transistor including a gate terminal, a source terminal, and a drain terminal, the transistor further including a predetermined maximum allowable gate voltage value, and a transient voltage suppression (TVS) device formed of a wide band gap material, the TVS device formed with the transistor as a single semiconductor device, the TVS device electrically coupled to the transistor between at least one of the gate and source terminals and the drain and source terminals, the TVS device including a breakdown voltage limitation selected to be greater than the predetermined maximum allowable gate voltage value.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: January 22, 2019
    Assignee: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, Peter Micah Sandvik, James Jay McMahon, Ljubisa Dragoljub Stevanovic
  • Publication number: 20190006529
    Abstract: The subject matter disclosed herein relates to silicon carbide (SiC) power devices and, more specifically, to SiC super-junction (SJ) power devices. A SiC-SJ device includes a plurality of SiC semiconductor layers of a first conductivity-type, wherein a first and a second SiC semiconductor layer of the plurality of SiC semiconductor layers comprise a termination region disposed adjacent to an active region with an interface formed therebetween, an act wherein the termination region of the first and the second SiC semiconductor layers comprises a plurality of implanted regions of a second conductivity-type, and wherein an effective doping profile of the termination region of the first SiC semiconductor layer is different from an effective doping profile of the termination region of the second SiC semiconductor layer.
    Type: Application
    Filed: December 15, 2015
    Publication date: January 3, 2019
    Inventors: Alexander Viktorovich BOLOTNIKOV, Peter Almern LOSEE, David Alan LILIENFELD, James Jay MCMAHON
  • Publication number: 20180269150
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to metal interconnect structures for super (skip) via integration and methods of manufacture. The structure includes: a first wiring layer with one or more wiring structures; a second wiring layer including an interconnect and wiring structure; and at least one upper wiring layer with one or more via interconnect and wiring structures located above the second wiring layer. The one or more via interconnect and wiring structures partially including a first metal material and remaining portions with a conductive material over the first metal material. A skip via passes through the second wiring layer and extends to the one or more wiring structures of the first wiring layer. The skip via partially includes the metal material and remaining portions of the skip via includes the conductive material over the first metal material.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Inventors: Sean Xuan LIN, Xunyuan ZHANG, Shao Beng LAW, James Jay McMahon
  • Patent number: 10078143
    Abstract: A solid state photomultiplier includes at least one microcell configured to generate an initial analog signal when exposed to optical photons. The solid state photomultiplier further includes a quench circuit electrically coupled with the at least one microcell. The quench circuit includes at least one quench resistor configured to exhibit a substantially constant temperature coefficient of resistance over a selected temperature range.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: September 18, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Peter Micah Sandvik, Stanislav Ivanovich Soloviev, Sergei Ivanovich Dolinsky, James Jay McMahon, Sabarni Palit
  • Patent number: 10026687
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to metal interconnect structures for super (skip) via integration and methods of manufacture. The structure includes: a first wiring layer with one or more wiring structures; a second wiring layer including an interconnect and wiring structure; and at least one upper wiring layer with one or more via interconnect and wiring structures located above the second wiring layer. The one or more via interconnect and wiring structures partially including a first metal material and remaining portions with a conductive material over the first metal material. A skip via passes through the second wiring layer and extends to the one or more wiring structures of the first wiring layer. The skip via partially includes the metal material and remaining portions of the skip via includes the conductive material over the first metal material.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: July 17, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Sean Xuan Lin, Xunyuan Zhang, Shao Beng Law, James Jay McMahon
  • Patent number: 9805972
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to skip via structures and methods of manufacture. The structure includes: a first wiring layer with one or more wiring structures; an upper wiring layer with one or more wiring structures, located above the first wiring layer; a blocking material which contacts at least one of the wiring structures of the upper wiring layer; a skip via with metallization, the skip via passes through the upper wiring layer and makes contact with the one or more wiring structures of the first wiring layer; and a conductive material in the skip via above the metallization and in a via interconnect above the blocking material.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: October 31, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xunyuan Zhang, Sean Xuan Lin, James Jay McMahon, Shao Beng Law
  • Publication number: 20170294434
    Abstract: A power transistor assembly and method of operating the assembly are provided. The power transistor assembly includes integrated transient voltage suppression on a single semiconductor substrate and includes a transistor formed of a wide band gap material, the transistor including a gate terminal, a source terminal, and a drain terminal, the transistor further including a predetermined maximum allowable gate voltage value, and a transient voltage suppression (TVS) device formed of a wide band gap material, the TVS device formed with the transistor as a single semiconductor device, the TVS device electrically coupled to the transistor between at least one of the gate and source terminals and the drain and source terminals, the TVS device including a breakdown voltage limitation selected to be greater than the predetermined maximum allowable gate voltage value.
    Type: Application
    Filed: October 25, 2016
    Publication date: October 12, 2017
    Inventors: Avinash Srikrishnan KASHYAP, Peter Micah SANDVIK, James Jay MCMAHON, Ljubisa Dragoljub STEVANOVIC
  • Publication number: 20170192112
    Abstract: A solid state photomultiplier includes at least one microcell configured to generate an initial analog signal when exposed to optical photons. The solid state photomultiplier further includes a quench circuit electrically coupled with the at least one microcell. The quench circuit includes at least one quench resistor configured to exhibit a substantially constant temperature coefficient of resistance over a selected temperature range.
    Type: Application
    Filed: December 31, 2015
    Publication date: July 6, 2017
    Inventors: Peter Micah Sandvik, Stanislav Ivanovich Soloviev, Sergei Ivanovich Dolinsky, James Jay McMahon, Sabarni Palit
  • Patent number: 9508841
    Abstract: A power transistor assembly and method of operating the assembly are provided. The power transistor assembly includes integrated transient voltage suppression on a single semiconductor substrate and includes a transistor formed of a wide band gap material, the transistor including a gate terminal, a source terminal, and a drain terminal, the transistor further including a predetermined maximum allowable gate voltage value, and a transient voltage suppression (TVS) device formed of a wide band gap material, the TVS device formed with the transistor as a single semiconductor device, the TVS device electrically coupled to the transistor between at least one of the gate and source terminals and the drain and source terminals, the TVS device including a breakdown voltage limitation selected to be greater than the predetermined maximum allowable gate voltage value.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: November 29, 2016
    Assignee: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, Peter Micah Sandvik, James Jay McMahon, Ljubisa Dragoljub Stevanovic
  • Publication number: 20150236151
    Abstract: A semiconductor device is presented. The device includes a semiconductor layer including silicon carbide, and having a first surface and a second surface. A gate insulating layer is disposed on a portion of the first surface of the semiconductor layer, and a gate electrode is disposed on the gate insulating layer. The device further includes an oxide disposed between the gate insulating layer and the gate electrode at a corner adjacent an edge of the gate electrode so as the gate insulating layer has a greater thickness at the corner than a thickness at a center of the layer. A method for fabricating the device is also provided.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 20, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Jay McMahon, Ljubisa Dragoljub Stevanovic, Stephen Daley Arthur, Thomas Bert Gorczyca, Richard Alfred Beaupre, Zachary Matthew Stum, Alexander Viktorovich Bolotnikov
  • Publication number: 20150034969
    Abstract: A power transistor assembly and method of operating the assembly are provided. The power transistor assembly includes integrated transient voltage suppression on a single semiconductor substrate and includes a transistor formed of a wide band gap material, the transistor including a gate terminal, a source terminal, and a drain terminal, the transistor further including a predetermined maximum allowable gate voltage value, and a transient voltage suppression (TVS) device formed of a wide band gap material, the TVS device formed with the transistor as a single semiconductor device, the TVS device electrically coupled to the transistor between at least one of the gate and source terminals and the drain and source terminals, the TVS device including a breakdown voltage limitation selected to be greater than the predetermined maximum allowable gate voltage value.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Applicant: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, Peter Micah Sandvik, James Jay McMahon, Ljubisa Dragoljub Stevanovic
  • Patent number: 8507986
    Abstract: In one embodiment, the invention comprises a MOSFET comprising individual MOSFET cells. Each cell comprises a U-shaped well (P type) and two parallel sources (N type) formed within the well. A Number of source rungs (doped N) connect sources at multiple locations. Regions between two rungs comprise a body (P type). These features are formed on an N-type epitaxial layer, which is formed on an N-type substrate. A contact extends across and contacts a number of source rungs and bodies. Gate oxide and a gate contact overlie a leg of a first well and a leg of a second adjacent well, inverting the conductivity responsive to a gate voltage. A MOSFET comprises a plurality of these cells to attain a desired low channel resistance. The cell regions are formed using self-alignment techniques at several states of the fabrication process.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: Stephen Daley Arthur, Kevin Sean Matocha, Peter Micah Sandvik, Zachary Matthew Stum, Peter Almren Losee, James Jay McMahon