Patents by Inventor James LOWREY

James LOWREY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240164483
    Abstract: Articles of footwear and methods of making articles of footwear including one or more continuous threads wound around anchor points. The winding of the one or more continuous threads forms a thread pattern that imparts desired characteristics to components of the article of footwear. Thread lines of the thread pattern may be bonded together. In some embodiments, thread lines may be bonded with a bonding layer.
    Type: Application
    Filed: January 31, 2024
    Publication date: May 23, 2024
    Inventors: Fionn Jonathan CORCORAN-TADD, Benjamin William KLEIMAN, Ian James HENNEBERY, Keith Paul THOMPSON, Peter David CAUWOOD, Peter Georg LAITENBERGER, Sam Jackson CONKLIN, Luke Alexander LOWREY
  • Patent number: 10717068
    Abstract: A metal oxide catalyst capable of catalyzing an oxidative coupling of methane reaction is described. The metal oxide catalyst includes a lanthanum (La) cerium (Ce) metal oxide and further including a lanthanum hydroxide (La(OH)3) crystalline phase. The catalyst is capable of catalyzing the production of C2+ hydrocarbons from methane and oxygen. Methods and systems of using the metal oxide catalyst to produce C2+ hydrocarbons from a reactant gas are also described.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: July 21, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES
    Inventors: Wugeng Liang, Sagar Sarsani, David West, James Lowrey, Aghaddin Mamedov, Istvan Lengyel
  • Patent number: 10696607
    Abstract: Disclosed is a process for producing C2+ hydrocarbons, and systems for implementing the process, that includes providing a reactant feed that includes methane and an oxygen containing gas to a first reaction zone, wherein the temperature of the reactant feed is less than 700° C. contacting the reactant feed with a first catalyst capable of catalyzing an oxidative coupling of methane reaction (OCM) to produce a first product stream that includes C2+ hydrocarbons and heat, and contacting the first product stream with a second catalyst capable of catalyzing an OCM reaction to produce a second product stream that includes C2+ hydrocarbons, wherein the produced heat is at least partially used to heat the first product stream prior to or during contact with the second catalyst, wherein the amount of C2+ hydrocarbons in the second product stream is greater than the amount of C2+ hydrocarbons in the first product stream.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: June 30, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Wugeng Liang, Sagar Sarsani, David West, James Lowrey, Aghaddin Mamedov, Istvan Lengyel
  • Patent number: 10625244
    Abstract: An oxidative coupling of methane (OCM) catalyst composition comprising one or more oxides doped with Ag; wherein one or more oxides comprises a single metal oxide, mixtures of single metal oxides, a mixed metal oxide, mixtures of mixed metal oxides, or combinations thereof; and wherein one or more oxides is not La2O3 alone. A method of making an OCM catalyst composition comprising calcining one or more oxides and/or oxide precursors to form one or more calcined oxides, wherein the one or more oxides comprises a single metal oxide, mixtures of single metal oxides, a mixed metal oxide, mixtures of mixed metal oxides, or combinations thereof, wherein the one or more oxides is not La2O3 alone, and wherein the oxide precursors comprise oxides, nitrates, carbonates, hydroxides, or combinations thereof; doping the one or more calcined oxides with Ag to form the OCM catalyst composition; and thermally treating the OCM catalyst composition.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Sabic Global Technologies, B.V.
    Inventors: Wugeng Liang, Vidya Sagar Reddy Sarsani, David West, Hector Perez, Aghaddin Mamedov, Istvan Lengyel, James Lowrey
  • Publication number: 20180353940
    Abstract: A metal oxide catalyst capable of catalyzing an oxidative coupling of methane reaction is described. The metal oxide catalyst includes a lanthanum (La) cerium (Ce) metal oxide and further including a lanthanum hydroxide (La(OH)3) crystalline phase. The catalyst is capable of catalyzing the production of C2+ hydrocarbons from methane and oxygen. Methods and systems of using the metal oxide catalyst to produce C2+ hydrocarbons from a reactant gas are also described.
    Type: Application
    Filed: May 2, 2016
    Publication date: December 13, 2018
    Inventors: Wugeng Liang, Sagar Sarsani, David West, James Lowrey, Aghaddin Mamedov, Istvan Lengyel
  • Publication number: 20180311658
    Abstract: Disclosed is a process to prepare a [MnNaW]On/SiO2 catalyst using manganese oxide (MnO2) and tungsten oxide (WO3) nanostructures. Also disclosed are methods and systems using the aforementioned catalyst having higher methane conversion and C2 to C4 selectivity compared to similar catalysts not prepared with MnO2 and WO3 nanostructures.
    Type: Application
    Filed: September 14, 2016
    Publication date: November 1, 2018
    Inventors: Wugeng LIANG, Vidya Sagar Reddy SARSANI, David WEST, Aghaddin MAMEDOV, James LOWREY, Istvan LENGYEL
  • Publication number: 20180162785
    Abstract: Disclosed is a process for producing C2+ hydrocarbons, and systems for implementing the process, that includes providing a reactant feed that includes methane and an oxygen containing gas to a first reaction zone, wherein the temperature of the reactant feed is less than 700° C. contacting the reactant feed with a first catalyst capable of catalyzing an oxidative coupling of methane reaction (OCM) to produce a first product stream that includes C2+ hydrocarbons and heat, and contacting the first product stream with a second catalyst capable of catalyzing an OCM reaction to produce a second product stream that includes C2+ hydrocarbons, wherein the produced heat is at least partially used to heat the first product stream prior to or during contact with the second catalyst, wherein the amount of C2+ hydrocarbons in the second product stream is greater than the amount of C2+ hydrocarbons in the first product stream.
    Type: Application
    Filed: May 2, 2016
    Publication date: June 14, 2018
    Inventors: Wugeng Liang, Sagar Sarsani, David West, James Lowrey, Aghaddin Mamedov, Istvan Lengyel
  • Patent number: 9981247
    Abstract: Methods for making a multilevel core-shell structure having a core/graphene-based shell structure are described. A method for making a core/graphene-based shell structure can include obtaining a composition that includes core nano- or microstructures and graphene-based structures having at least a portion of a surface coated with a curable organic material, where the core nano- or microstructures and graphene-based structures are dispersed throughout the composition and subjecting the composition to conditions that cure the organic material and allow the graphene-based structures to self-assemble around the core nano- or microstructures to produce a core/graphene-based shell structure that has a graphene-based shell encompassing a core nano- or microstructure.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: May 29, 2018
    Assignee: SABIC Global Technologies B.V.
    Inventors: Nitin Chopra, James Lowrey, Ihab N. Odeh
  • Publication number: 20170368535
    Abstract: Methods for making a multilevel core-shell structure having a core/graphene-based shell structure are described. A method for making a core/graphene-based shell structure can include obtaining a composition that includes core nano- or microstructures and graphene-based structures having at least a portion of a surface coated with a curable organic material, where the core nano- or microstructures and graphene-based structures are dispersed throughout the composition and subjecting the composition to conditions that cure the organic material and allow the graphene-based structures to self-assemble around the core nano- or microstructures to produce a core/graphene-based shell structure that has a graphene-based shell encompassing a core nano- or microstructure.
    Type: Application
    Filed: November 9, 2016
    Publication date: December 28, 2017
    Inventors: Nitin Chopra, James Lowrey, Ihab N. Odeh
  • Publication number: 20170190638
    Abstract: A method for producing ethylbenzene (EB) comprising introducing to an oxidative coupling of methane (OCM) reactor an OCM reactant mixture comprising CH4 and O2; allowing the OCM reactant mixture to react via OCM reaction to form an OCM product mixture comprising C2H4, C2H6, water, CO, CO2 and unreacted methane; separating the water and optionally CO and/or CO2 from the OCM product mixture to yield an EB reactant mixture comprising C2H4, C2H6, unreacted methane, and optionally CO and/or CO2; (d) introducing benzene and an EB reactant mixture to an EB reactor; allowing benzene to react in a liquid phase with the ethylene of the EB reactant mixture to form EB; recovering from the EB reactor an EB product mixture comprising EB and unreacted benzene, and an unreacted alkanes mixture comprising C2H6 and unreacted methane, and optionally CO and/or CO2; and optionally recycling the unreacted alkanes mixture to the OCM reactor.
    Type: Application
    Filed: November 29, 2016
    Publication date: July 6, 2017
    Inventors: Wugeng LIANG, Vidya Sagar Reddy SARSANI, David WEST, Aghaddin MAMEDOV, James LOWREY
  • Publication number: 20170014807
    Abstract: An oxidative coupling of methane (OCM) catalyst composition comprising one or more oxides doped with Ag; wherein one or more oxides comprises a single metal oxide, mixtures of single metal oxides, a mixed metal oxide, mixtures of mixed metal oxides, or combinations thereof; and wherein one or more oxides is not La2O3 alone. A method of making an OCM catalyst composition comprising calcining one or more oxides and/or oxide precursors to form one or more calcined oxides, wherein the one or more oxides comprises a single metal oxide, mixtures of single metal oxides, a mixed metal oxide, mixtures of mixed metal oxides, or combinations thereof, wherein the one or more oxides is not La2O3 alone, and wherein the oxide precursors comprise oxides, nitrates, carbonates, hydroxides, or combinations thereof; doping the one or more calcined oxides with Ag to form the OCM catalyst composition; and thermally treating the OCM catalyst composition.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 19, 2017
    Inventors: Wugeng LIANG, Vidya Sagar Reddy SARSANI, David WEST, Hector PEREZ, Aghaddin MAMEDOV, Istvan LENGYEL, James LOWREY
  • Publication number: 20160376208
    Abstract: A method for producing olefins comprising (a) introducing to an isothermal reactor a reactant mixture comprising CH4 and O2, wherein the reactor comprises a catalyst bed comprising a catalyst, wherein a catalyst bed temperature is 750-1,000° C., and wherein the reactor has a residence time of 1-100 ms; (b) wherein isothermal conditions minimize hot spots in the bed, thereby decreasing deep oxidation reactions; (c) allowing the reactant mixture to contact the catalyst and react via oxidative coupling of CH4 reaction to form a product mixture comprising C2+ hydrocarbons (olefins and paraffins; C2 hydrocarbons and C3 hydrocarbons) and synthesis gas (H2 and CO), wherein the product mixture has an olefin/paraffin molar ratio of from 0.5:1 to 20:1, and wherein the product mixture has a H2/CO molar ratio of from 0.2:1 to 2.5:1; (d) recovering the product mixture from the reactor; and (e) recovering C2 hydrocarbons and/or synthesis gas from the product mixture.
    Type: Application
    Filed: June 13, 2016
    Publication date: December 29, 2016
    Inventors: Vidya Sagar Reddy SARSANI, David WEST, Aghaddin MAMEDOV, Wugeng LIANG, James LOWREY, Istvan LENGYEL