Patents by Inventor James Lupton Hedrick

James Lupton Hedrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110245433
    Abstract: Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.
    Type: Application
    Filed: May 4, 2011
    Publication date: October 6, 2011
    Inventors: Jennifer Nam Cha, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Patent number: 8011517
    Abstract: A composite membrane includes a filtration membrane with a surface; and a layer on the surface of the filtration membrane. The layer includes a polymer including a poly(ethylene glycol) moiety cross-linked with an ammonium salt or a precursor of an ammonium salt.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Robert David Allen, James Lupton Hedrick, Young-Hye Na, Alshakim Nelson, Ratnam Sooriyakumaran
  • Patent number: 8012541
    Abstract: A method of storing information. The method including: applying a layer of one or more poly(aryl ether ketone) copolymers to a substrate and thermally curing the layer to form a resin layer, each of the one or more poly(aryl ether ketone) copolymers comprising (a) a first monomer including an aryl ether ketone and (b) a second monomer including an aryl ether ketone and a hydrogen bonding cross-linking moiety, each of the one or more poly(aryl ether ketone) copolymers having two terminal ends, each terminal end having a phenylethynyl moiety, and bringing a thermal-mechanical probe heated to a temperature of greater than 100° C. into proximity with the resin layer multiple times to induce deformed regions at points in the resin layer, the thermal-mechanical probe heating the points in the resin layer of the resin and thereby writing information in the resin layer.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt
  • Patent number: 7960442
    Abstract: Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: June 14, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jennifer Nam Cha, Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Willi Volksen
  • Publication number: 20110128840
    Abstract: A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone polymers, each of the one or more polyaryletherketone polymers having two terminal ends, each terminal end having two or more phenylethynyl moieties. The one or more polyaryletherketone polymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layers in atomic force data storage devices.
    Type: Application
    Filed: January 28, 2011
    Publication date: June 2, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Publication number: 20110120941
    Abstract: A composite membrane includes a filtration membrane with a surface; and a layer on the surface of the filtration membrane.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Applicant: International Business Machines Corporation
    Inventors: Robert David Allen, James Lupton Hedrick, Young-Hye Na, Alshakim Nelson, Ratnam Sooriyakumaran
  • Patent number: 7939620
    Abstract: A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone polymers, each of the one or more polyaryletherketone polymers having two terminal ends, each terminal end having two or more phenylethynyl moieties. The one or more polyaryletherketone polymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layers in atomic force data storage devices.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Patent number: 7939621
    Abstract: A cyclic carbonate monomer, including: wherein R1, R2, and R3 are independently selected from the group consisting of H, linear or branched, substituted or unsubstituted alkyl; R10 is a connecting group selected from the group consisting of linear or branched, substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocyclic, aryl and heteroaryl; R4 is an optional bridging group selected from the group consisting of linear or branched, substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocyclic, aryl and heteroaryl; Z is selected from the group consisting of O, NH, NR, and S; G is a guanidine group; and P is a protecting group. The cylic carbonate monomer can be reacted with an initiator including a drug, drug candidate, probe or other molecule of interest to form an oligomer with the molecule of interest attached to one end of a carbonate backbone and guanidine groups attached to the carbonate backbone.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 10, 2011
    Assignees: International Business Machines Corporation, Stanford University
    Inventors: Christina Cooley, James Lupton Hedrick, Matthew Kiesewetter, Fredrik Nederberg, Brian Trantow, Robert Waymouth, Paul Wender
  • Patent number: 7931829
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Publication number: 20110004014
    Abstract: The disclosure relates to methods and materials useful for depolymerizing a polymer. In one embodiment, for example, the disclosure provides a method for depolymerizing a polymer containing electrophilic linkages, wherein the method comprises contacting the polymer with a nucleophilic reagent in the presence of a guanidine-containing compound. The methods and materials of the disclosure find utility, for example, in the field of waste reclamation and recycling.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Inventors: James Lupton Hedrick, Russell Clayton Pratt, Robert M. Waymouth
  • Publication number: 20110003949
    Abstract: The disclosure relates to methods and materials useful for polymerizing a monomer. In one embodiment, for example, the disclosure provides a method for polymerizing a monomer containing a plurality of electrophilic groups, wherein the method comprises contacting the monomer with a nucleophilic reagent in the presence of a guanidine-containing catalyst. The methods and materials of the disclosure find utility, for example, in the field of materials science.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Inventors: James Lupton Hedrick, Russell Clayton Pratt, Robert M. Waymouth
  • Patent number: 7854878
    Abstract: A method including providing Au-doped Co nanoparticles. The nanoparticles include a combination of non-ferromagnetic nanoparticles and weakly ferromagnetic nanoparticles. The nanoparticles each have an exterior surface. The surfaces of the nanoparticles are functionalized with 7-(5-uracil-ylcarbamoyl)heptanoic acid. A polymer is provided having a general formula including a uracil group. A dispersion is formed by agitating a solution of the nanoparticles. The solution is spin cast into a film. The film is heated under vacuum at a first temperature, TFM, resulting in inducing ferromagnetism in the non-ferromagnetic nanoparticles and converting the non-ferromagnetic nanoparticles to ferromagnetic nanoparticles, and resulting in enhancing ferromagnetism in the weakly ferromagnetic nanoparticles. The nanoparticles are aligned such that magnetic easy axes of the nanoparticles are oriented by applying a magnetic field to the dispersion while at a second temperature less than TFM.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: December 21, 2010
    Assignee: International Business Machines Corporation
    Inventors: James Lupton Hedrick, Delia Jane Milliron, Alshakim Nelson, Russell Clayton Pratt
  • Publication number: 20100311895
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Application
    Filed: August 17, 2010
    Publication date: December 9, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Publication number: 20100284264
    Abstract: A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone copolymers, each of the one or more polyaryletherketone copolymers comprising (a) a first monomer including an aryl ether ketone and (b) a second monomer including an aryl ether ketone and a first phenylethynyl moiety, each of the one or more polyaryletherketone copolymers having two terminal ends, each terminal end having a phenylethynyl moiety the same as or different from the first phenylethynyl moiety. The one or more polyaryletherketone copolymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layer in an atomic force data storage device.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 11, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Publication number: 20100273295
    Abstract: A nanoparticle which includes a multi-armed core and surface decoration which is attached to the core is prepared. A multi-armed core is provided by any of a number of possible routes, exemplary preferred routes being living anionic polymerization that is initiated by a reactive, functionalized anionic initiator and ?-caprolactone polymerization of a bis-MPA dendrimer. The multi-armed core is preferably functionalized on some or all arms. A coupling reaction is then employed to bond surface decoration to one or more arms of the multi-armed core. The surface decoration is a small molecule or oligomer with a degree of polymerization less than 50, a preferred decoration being a PEG oligomer with degree of polymerization between 2 and 24. The nanoparticles (particle size ?10 nm) are employed as sacrificial templating porogens to form porous dielectrics. The porogens are mixed with matrix precursors (e.g., methyl silsesquioxane resin), the matrix vitrifies, and the porogens are removed via burnout.
    Type: Application
    Filed: April 29, 2010
    Publication date: October 28, 2010
    Inventors: James Lupton Hedrick, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller
  • Patent number: 7820242
    Abstract: A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Geraud Jean-Michel Dubois, James Lupton Hedrick, Ho-Cheol Kim, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Muthumanickam Sankarapandian, Linda Karin Sundberg, Willi Volksen
  • Patent number: 7811499
    Abstract: An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyaryletherketone polymers are used as the recording layers in atomic force data storage devices, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyaryletherketone polymers may be tuned to match thermal and force parameters required in read-write-erase cycles.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: October 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade
  • Publication number: 20100196661
    Abstract: Probe-based methods for patterning a surface of a material are described. In particular, high resolution patterning of molecules on a surface of a material, such as nano-scale patterns with feature sizes of less than 30 nanometers, are described. In one aspect, a method for patterning a surface of a material includes providing a material having a polymer film. A heated, nano-scale dimensioned probe is then used to desorb molecules upon interacting with the film. The film includes a network of molecules (such as molecular glasses) which are cross-linked via intermolecular (noncovalent) bonds, such as hydrogen bonds.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Inventors: Urs T. Duerig, Bernd W. Gotsmann, James Lupton Hedrick, Armin W. Knoll, David Santos Pires
  • Patent number: 7749915
    Abstract: A method of protecting a polymeric layer from contamination by a photoresist layer. The method includes: (a) forming a polymeric layer over a substrate; (b) forming a non-photoactive protection layer over the polymeric layer; (c) forming a photoresist layer over the protection layer; (d) exposing the photoresist layer to actinic radiation and developing the photoresist layer to form a patterned photoresist layer, thereby exposing regions of the protection layer; (e) etching through the protection layer and the polymeric layer where the protection layer is not protected by the patterned photoresist layer; (f) removing the patterned photoresist layer in a first removal process; and (g) removing the protection layer in a second removal process different from the first removal process.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ute Drechsler, Urs T. Duerig, Jane Elizabeth Frommer, Bernd W. Gotsmann, James Lupton Hedrick, Armin W. Knoll, Tobias Kraus, Robert Dennis Miller
  • Patent number: 7723458
    Abstract: An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyaryletherketone polymers are used as the recording layers in atomic force data storage devices, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyaryletherketone polymers may be tuned to match thermal and force parameters required in read-write-erase cycles.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: Richard Anthony DiPietro, Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade