Patents by Inventor James M. Olsen

James M. Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10004910
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: June 26, 2018
    Assignee: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Patent number: 10004897
    Abstract: A medical lead is configured to be implanted into a patient's body and comprises a lead body, and an electrode coupled to the lead body. The electrode comprises a first section configured to contact the patient's body, and a second section capacitively coupled to the first section and configured to be electrically coupled to the patient's body.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: June 26, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: James M. Olsen, Gregory A. Hrdlicka, Carl D. Wahlstrand, Thomas Barry Hoegh
  • Patent number: 9993638
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 12, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Jamu K. Alford, Spencer M. Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Patent number: 9974950
    Abstract: Implantable medical leads and implantable lead extensions include a shield. The implantable medical lead is coupled to the implantable lead extension. Stimulation electrodes of the implantable medical lead contact stimulation connectors within a housing of the implantable extension to establish a conductive pathway for stimulation signals from filars of the implantable extension to filars of the implantable medical lead. Continuity is established between the shield of the implantable medical lead and the implantable extension by providing a radio frequency conductive pathway within the housing. The radio frequency conductive pathway extends from a shield of the implantable extension to a shield connector that contacts a shield electrode of the implantable medical lead. The radio frequency conductive pathway may have various forms such as a jumper wire or an extension of the shield within the implantable extension.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 22, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: James M. Olsen, Bruce R. Mehdizadeh, Michael J. Kern
  • Publication number: 20180125388
    Abstract: Changes in electrical stimulation therapy delivered via a medical device are coordinated with Functional Magnetic Resonance Imaging (fMRI) scans. In one example, a medical device delivers electrical stimulation therapy to a patient in an MRI unit, where the medical device is configured to cycle electrical stimulation therapy between a plurality of stimulation states. An indication that the medical device will cycle the electrical stimulation therapy or has cycled the electrical stimulation therapy while the patient is in the MRI unit or being imaged by the MRI unit is generated, and an MRI scan of the patient via an MRI workstation is initiated based on the indication. In another example, a medical device detects activation of an MRI scan and automatically switches stimulation states based upon the detection of the MRI scan, such that the scan is associated with a particular stimulation state.
    Type: Application
    Filed: January 10, 2018
    Publication date: May 10, 2018
    Inventors: James M. Olsen, Steven M. Goetz
  • Patent number: 9956402
    Abstract: Radiopaque markers represent that a lead is suitable for a particular medical procedure such as a magnetic resonance image scan and are added to the lead or related device. The markers may be added after implantation of the lead in various ways including suturing, gluing, crimping, or clamping a radiopaque tag to the lead or to the device. The markers may be added by placing a radiopaque coil about the lead, and the radiopaque coil may radially contract against the lead to obtain a fixed position. The markers may be added by placing a polymer structure onto the lead where the polymer structure includes a radiopaque marker within it. The polymer structure may include a cylindrical aperture that contracts against the lead to fix the position of the structure. The polymer structure may form a lead anchor that includes suture wings that can be sutured to the lead.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: May 1, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: James M. Olsen, Michael R. Klardie, Richard T. Stone, Chad Q. Cai, Spencer M. Bondhus, Mark J. Conroy, Timothy R. Abraham, Bruce R. Mehdizadeh, Michael J. Kern, Jay K. Lahti
  • Patent number: 9901284
    Abstract: Changes in electrical stimulation therapy delivered via a medical device are coordinated with Functional Magnetic Resonance Imaging (fMRI) scans. In one example, a medical device delivers electrical stimulation therapy to a patient in an MRI unit, where the medical device is configured to cycle electrical stimulation therapy between a plurality of stimulation states. An indication that the medical device will cycle the electrical stimulation therapy or has cycled the electrical stimulation therapy while the patient is in the MRI unit or being imaged by the MRI unit is generated, and an MRI scan of the patient via an MRI workstation is initiated based on the indication. In another example, a medical device detects activation of an MRI scan and automatically switches stimulation states based upon the detection of the MRI scan, such that the scan is associated with a particular stimulation state.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: February 27, 2018
    Assignee: Medtronic, Inc.
    Inventors: James M. Olsen, Steven M. Goetz
  • Publication number: 20180008820
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: September 20, 2017
    Publication date: January 11, 2018
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Publication number: 20170348537
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 7, 2017
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Publication number: 20170340878
    Abstract: A medical lead is provided for use in a pulse stimulation system of the type which includes a pulse generator for producing electrical stimulation therapy. The lead comprises an elongate insulating body and at least one electrical conductor within the insulating body. The conductor has a proximal end configured to be electrically coupled to the pulse generator and has a DC resistance in the range of 375-2000 ohms. At least one distal electrode is coupled to the conductor.
    Type: Application
    Filed: August 21, 2017
    Publication date: November 30, 2017
    Inventors: Carl D. Wahlstrand, Robert M. Skime, Gregory A. Hrdlicka, James M. Olsen, Stephen L. Bolea
  • Publication number: 20170246449
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: March 10, 2017
    Publication date: August 31, 2017
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
  • Publication number: 20170239460
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Patent number: 9737704
    Abstract: A medical lead is provided for use in a pulse stimulation system of the type which includes a pulse generator for producing electrical stimulation therapy. The lead comprises an elongate insulating body and at least one electrical conductor within the insulating body. The conductor has a proximal end configured to he electrically coupled to the pulse generator and has a DC resistance in the range of 375-2000 ohms. At least one distal electrode is coupled to the conductor.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: August 22, 2017
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, Robert M. Skime, Gregory A. Hrdlicka, James M. Olsen, Stephen L. Bolea
  • Publication number: 20170224984
    Abstract: Implantable medical leads and implantable lead extensions include a shield. The implantable medical lead is coupled to the implantable lead extension. Stimulation electrodes of the implantable medical lead contact stimulation connectors within a housing of the implantable extension to establish a conductive pathway for stimulation signals from filars of the implantable extension to filars of the implantable medical lead. Continuity is established between the shield of the implantable medical lead and the implantable extension by providing a radio frequency conductive pathway within the housing. The radio frequency conductive pathway extends from a shield of the implantable extension to a shield connector that contacts a shield electrode of the implantable medical lead. The radio frequency conductive pathway may have various forms such as a jumper wire or an extension of the shield within the implantable extension.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: James M. Olsen, Bruce R. Mehdizadeh, Michael J. Kern
  • Patent number: 9694188
    Abstract: A system may include a processor configured to automatically obtain magnetic resonance imaging compatibility information relating to compatibility of an active implantable medical device implantable in a patient with an MRI modality from at least two information sources. The processor may also be configured to automatically determine compatibility of the active implantable medical device with the magnetic resonance imaging modality based on the magnetic resonance imaging compatibility information.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 4, 2017
    Assignee: Medtronic, Inc.
    Inventors: Hrishikesh Gadagkar, James Zimmerman, James M. Olsen, Robyn L. Jagler, Timothy R. Abraham, Jeffrey R. Dixon
  • Patent number: 9643009
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: May 9, 2017
    Assignee: MEDTRONIC, INC.
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Patent number: 9629998
    Abstract: Implantable medical leads and implantable lead extensions include a shield. The implantable medical lead is coupled to the implantable lead extension. Stimulation electrodes of the implantable medical lead contact stimulation connectors within a housing of the implantable extension to establish a conductive pathway for stimulation signals from filars of the implantable extension to filars of the implantable medical lead. Continuity is established between the shield of the implantable medical lead and the implantable extension by providing a radio frequency conductive pathway within the housing. The radio frequency conductive pathway extends from a shield of the implantable extension to a shield connector that contacts a shield electrode of the implantable medical lead. The radio frequency conductive pathway may have various forms such as a jumper wire or an extension of the shield within the implantable extension.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: April 25, 2017
    Assignee: MEDTRONICS, INC.
    Inventors: James M. Olsen, Bruce R. Mehdizadeh, Michael J. Kern
  • Publication number: 20170087357
    Abstract: A medical lead is configured to be implanted into a patient's body and comprises a lead body, and an electrode coupled to the lead body. The electrode comprises a first section configured to contact the patient's body, and a second section capacitively coupled to the first section and configured to be electrically coupled to the patient's body.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: James M. Olsen, Gregory A. Hrdlicka, Carl D. Wahlstrand, Thomas Barry Hoegh
  • Publication number: 20170007827
    Abstract: A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.
    Type: Application
    Filed: August 31, 2016
    Publication date: January 12, 2017
    Inventors: Bruce R. Mehdizadeh, Brian T. Stolz, Michael Robert Klardie, James M. Olsen, Michael J. Kern, Richard T. Stone, Chad Q. Cai, Spencer M. Bondhus, Mark J. Conroy, Timothy R. Abraham
  • Publication number: 20160375257
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 29, 2016
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen