Patents by Inventor James Oakdale

James Oakdale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884002
    Abstract: Disclosed here is a method for making a three-dimensional micro-architected aerogel, comprising: (a) curing a reaction mixture comprising a co-sol-gel material (e.g., graphene oxide (GO)) and at least one catalyst to obtain a crosslinked co-sol-gel (e.g., GO hydrogel); (b) providing a photoresin comprising a solvent, a photoinitiator, a crosslinkable polymer precursor, and a dispersion of the crosslinked co-sol-gel (e.g., GO hydrogel); (c) curing the photoresin using projection microstereolithography layer-by-layer to produce a wet gel having a pre-designed three-dimensional structure; (d) drying the wet gel to produce a dry gel; and (e) pyrolyzing the dry gel to produce a three-dimensional micro-architected aerogel (e.g., graphene aerogel). Also disclosed is a photoresin for projection microstereolithography, comprising a solvent, a photoinitiator, a crosslinkable polymer precursor, and a dispersion of a crosslinked co-sol-gel.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: January 30, 2024
    Assignees: Lawrence Livermore National Security, LLC, Virginia Polytechnic Institute and State University
    Inventors: Marcus A. Worsley, Xiaoyu Zheng, Patrick G. Campbell, Eric Duoss, James Oakdale, Christopher Spadaccini, Ryan Hensleigh
  • Patent number: 11639031
    Abstract: Methods and materials for volumetric additive manufacturing, including computed axial lithography (“CAL”), using photosensitive resins comprising a photocurable resin prepolymer; a photoinitiator; and (optionally) a curing inhibitor. In various embodiments, such photosensitive polymers comprise (a) one or more monomer (or prepolymer) molecules, which form the backbone of the polymer network of the polymeric material and define its architecture; and (b) a photoinitiator that captures illumination energy and initiates polymerization.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: May 2, 2023
    Assignees: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Maxim Shusteff, James Oakdale, Robert Matthew Panas, Christopher M. Spadaccini, Hayden K. Taylor, Brett Kelly, Indrasen Bhattacharya, Hossein Heidari
  • Patent number: 11623396
    Abstract: The present disclosure relates to a tensioning system for use in a stereolithography manufacturing application. The system may have a build plate for supporting a three dimensional part being formed using a photo responsive resin, a base plate and a release element extending over the base plate. The release element is configured to receive a quantity of photo responsive resin for forming a new material layer of the three dimensional part. A pair of tensioning components are secured to opposite ends of the release element, and apply a controlled tension force to the release element during peeling of the release element to reduce a separation force required to separate the release element from the new material layer after the new material layer is cured.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: April 11, 2023
    Assignees: Lawrence Livermore National Security, LLC, Board of Regents, The University of Texas System
    Inventors: Eric B. Duoss, James Oakdale, Nicholas Anthony Rodriguez, Hongtao Song, Richard Crawford, Carolyn Seepersad, Morgan Chen
  • Patent number: 11360348
    Abstract: The present disclosure relates to a liquid crystal display (LCD) system. The system in one example has a light source for generating unpolarized light, and an LCD screen arranged in a path of transmittance of the unpolarized light. First and second wire grid polarizers are arranged adjacent to the LCD screen and each have a plurality of nano-scale wires, with the first and second wire grid polarizers have differing polarizations. A pitch of each of the nano-scale wires is no larger than one-third a wavelength of the unpolarized light from the light source. The wire grid polarizers create, in connection with operation of the LCD screen, a 2D light mask suitable for initiating the polymerization of an optically curable material.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: June 14, 2022
    Assignees: Lawrence Livermore National Security, LLC, Board of Regents, The University of Texas System
    Inventors: Eric B. Duoss, James Oakdale, Nicholas Anthony Rodriguez, Hongtao Song, Richard Crawford, Carolyn Seepersad, Morgan Chen
  • Publication number: 20220137452
    Abstract: The present disclosure relates to a liquid crystal display (LCD) system. The system in one example has a light source for generating unpolarized light, and an LCD screen arranged in a path of transmittance of the unpolarized light. First and second wire grid polarizers are arranged adjacent to the LCD screen and each have a plurality of nano-scale wires, with the first and second wire grid polarizers have differing polarizations. A pitch of each of the nano-scale wires is no larger than one-third a wavelength of the unpolarized light from the light source. The wire grid polarizers create, in connection with operation of the LCD screen, a 2D light mask suitable for initiating the polymerization of an optically curable material.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Inventors: Eric B. DUOSS, James OAKDALE, Nicholas Anthony RODRIGUEZ, Hongtao SONG, Richard CRAWFORD, Carolyn SEEPERSAD, Morgan CHEN
  • Publication number: 20220088868
    Abstract: The present disclosure relates to a tensioning system for use in a stereolithography manufacturing application. The system may have a build plate for supporting a three dimensional part being formed using a photo responsive resin, a base plate and a release element extending over the base plate. The release element is configured to receive a quantity of photo responsive resin for forming a new material layer of the three dimensional part. A pair of tensioning components are secured to opposite ends of the release element, and apply a controlled tension force to the release element during peeling of the release element to reduce a separation force required to separate the release element from the new material layer after the new material layer is cured.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventors: Eric B. DUOSS, James OAKDALE, Nicholas Anthony RODRIGUEZ, Hongtao SONG, Richard CRAWFORD, Carolyn SEEPERSAD, Morgan CHEN
  • Publication number: 20220064427
    Abstract: According to one embodiment, a mixture includes a fluoropolymer monomer having at least one functional group amenable to polymerization, a pore-forming material, and a polymerization initiator. According to another embodiment, a product includes a porous three-dimensional structure comprising a crosslinked fluoropolymer, where at least 20% of a volume measured within an outer periphery of the porous three-dimensional structure corresponds to the pores.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: James Oakdale, Sarah E. Baker, Nikola Dudukovic, Eric B. Duoss, Melinda Lia Wah Jue
  • Publication number: 20210364915
    Abstract: According to one exemplary embodiment, a method includes exposing one or more portions of an additive manufacturing resin to light; where the light includes a wavelength configured to cause a photo polymerizable compound in the additive manufacturing resin to polymerize; and the one or more portions of the additive manufacturing resin are defined by a three-dimensional pattern. Moreover, a method of forming an additive manufacturing resin suitable for fabricating a click-chemistry compatible composition of matter includes: reacting a compound comprising a terminal alkyne group or a terminal azide group with a protecting reagent to form a protected reactive diluent precursor, reacting the precursor with a second compound to form a protected reactive diluent; and mixing the protected reactive diluent with a photo polymerizable compound.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 25, 2021
    Inventors: Patrick Campbell, Eric Duoss, James Oakdale
  • Patent number: 11106131
    Abstract: According to several embodiments, a composition of matter includes: a three-dimensional structure comprising photo polymerized molecules. At least some of the photo polymerized molecules further comprise one or more protected click-chemistry compatible functional groups; and at least portions of one or more surfaces of the three-dimensional structure are functionalized with one or more of the protected click-chemistry compatible functional groups. An additive manufacturing resin suitable for fabricating a click-chemistry compatible composition of matter includes: a photo polymerizable compound; and a click-chemistry compatible compound.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: August 31, 2021
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Patrick Campbell, Eric Duoss, James Oakdale
  • Publication number: 20210237344
    Abstract: Disclosed here is a method for making a three-dimensional micro-architected aerogel, comprising: (a) curing a reaction mixture comprising a co-sol-gel material (e.g., graphene oxide (GO)) and at least one catalyst to obtain a crosslinked co-sol-gel (e.g., GO hydrogel); (b) providing a photoresin comprising a solvent, a photoinitiator, a crosslinkable polymer precursor, and a dispersion of the crosslinked co-sol-gel (e.g., GO hydrogel); (c) curing the photoresin using projection microstereolithography layer-by-layer to produce a wet gel having a pre-designed three-dimensional structure; (d) drying the wet gel to produce a dry gel; and (e) pyrolyzing the dry gel to produce a three-dimensional micro-architected aerogel (e.g., graphene aerogel). Also disclosed is a photoresin for projection microstereolithography, comprising a solvent, a photoinitiator, a crosslinkable polymer precursor, and a dispersion of a crosslinked co-sol-gel.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 5, 2021
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Xiaoyu Zheng, Patrick G. Campbell, Eric Duoss, James Oakdale, Christopher Spadaccini, Ryan Hensleigh
  • Patent number: 10962879
    Abstract: According to several embodiments, a composition of matter includes: a three-dimensional structure comprising photo polymerized molecules. At least some of the photo polymerized molecules further comprise one or more protected click-chemistry compatible functional groups; and at least portions of one or more surfaces of the three-dimensional structure are functionalized with one or more of the protected click-chemistry compatible functional groups.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: March 30, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick Campbell, Eric Duoss, James Oakdale
  • Publication number: 20210053056
    Abstract: The present disclosure relates to a computer aided design (CAD) manufactured lattice structure. The structure may have a plurality of tessellated cells formed from a plurality of interconnected struts, with the interconnected struts formed from a curable resin. The interconnecting struts form voids within each cell, with the voids communicating with one another. The struts may be formed such that the voids have a non-uniform dimension to create a varying porosity within the lattice structure.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Inventors: Nikola DUDUKOVIC, Sarah BAKER, Victor Alfred BECK, Swetha CHANDRASEKARAN, Joshua R. DEOTTE, Eric B. DUOSS, Jeremy Taylor FEASTER, Jennifer Marie KNIPE, Julie MANCINI, James OAKDALE, Fang QIAN, Marcus A. WORSLEY
  • Publication number: 20200361152
    Abstract: Methods and materials for volumetric additive manufacturing, including computed axial lithography (“CAL”), using photosensitive resins comprising a photocurable resin prepolymer; a photoinitiator; and (optionally) a curing inhibitor. In various embodiments, such photosensitive polymers comprise (a) one or more monomer (or prepolymer) molecules, which form the backbone of the polymer network of the polymeric material and define its architecture; and (b) a photoinitiator that captures illumination energy and initiates polymerization.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 19, 2020
    Inventors: Maxim SHUSTEFF, James OAKDALE, Robert Matthew PANAS, Christopher M. SPADACCINI, Hayden K. TAYLOR, Brett KELLY, Indrasen BHATTACHARYA, Hossein HEIDARI
  • Publication number: 20200317870
    Abstract: In one embodiment, a mixture includes a polyfunctional monomer having at least one functional group amenable to polymerization, a porogen, and a polymerization initiator. In another embodiment, a product includes a porous three-dimensional structure formed by additive manufacturing, where the porous three-dimensional structure has ligaments arranged in a geometric pattern, the ligaments defining pores therebetween. The pores have an average diameter greater than about 10 microns, where an average length scale of the ligaments is greater than 100 nanometers. The ligaments are nanoporous, where at least 80% of a volume measured according to outer dimensions of the porous three-dimensional structure corresponds to the pores.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 8, 2020
    Inventors: Siwei Liang, Theodore F. Baumann, Juergen Biener, Monika M. Biener, Bryan D. Moran, James Oakdale, Jianchao Ye
  • Patent number: 10732502
    Abstract: According to various embodiments, systems, methods, and computer program products for click-chemistry compatible structures, additive manufacturing resins for forming the same, and method of formation of such structures and resins, as well as techniques for functionalizing click-chemistry compatible structures are disclosed. The inventive structures generally include a plurality of photo polymerized molecules structurally arranged according to a three-dimensional pattern, while surfaces of the structure are functionalized with one or more click-chemistry compatible molecules each having one or more click-chemistry compatible functional groups. The structures may be formed from single- or dual-component resins, each having unique synthetic pathways. The resulting structures may be functionalized for utility in a wide range of applications by leveraging click chemistry to further functionalize the structure with organic additives also compatible with click-chemistry reaction schemes.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: August 4, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick Campbell, Eric Duoss, James Oakdale
  • Patent number: 10647580
    Abstract: In one embodiment, a composition of matter includes: a plurality of ligaments each independently comprising one or more layers of graphene; where the plurality of ligaments are arranged according to a deterministic three-dimensional (3D) pattern. In another embodiment, a method of forming a deterministic three-dimensional (3D) architecture of graphene includes: forming or providing a substrate structurally characterized by a predefined 3D pattern; forming one or more layers of metal on surfaces of the substrate; and forming one or more layers of graphene on surfaces of the metal.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: May 12, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jianchao Ye, Juergen Biener, Patrick Campbell, Wen Chen, Julie A. Jackson, Bryan D. Moran, James Oakdale, William Smith, Christopher Spadaccini, Marcus A. Worsley, Xiaoyu Zheng
  • Publication number: 20180329296
    Abstract: According to several embodiments, a composition of matter includes: a three-dimensional structure comprising photo polymerized molecules. At least some of the photo polymerized molecules further comprise one or more protected click-chemistry compatible functional groups; and at least portions of one or more surfaces of the three-dimensional structure are functionalized with one or more of the protected click-chemistry compatible functional groups.
    Type: Application
    Filed: July 25, 2018
    Publication date: November 15, 2018
    Inventors: Patrick Campbell, Eric Duoss, James Oakdale
  • Publication number: 20180208467
    Abstract: In one embodiment, a composition of matter includes: a plurality of ligaments each independently comprising one or more layers of graphene; where the plurality of ligaments are arranged according to a deterministic three-dimensional (3D) pattern. In another embodiment, a method of forming a deterministic three-dimensional (3D) architecture of graphene includes: forming or providing a substrate structurally characterized by a predefined 3D pattern; forming one or more layers of metal on surfaces of the substrate; and forming one or more layers of graphene on surfaces of the metal.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 26, 2018
    Inventors: Jianchao Ye, Juergen Biener, Patrick Campbell, Wen Chen, Julie A. Jackson, Bryan D. Moran, James Oakdale, William Smith, Christopher Spadaccini, Marcus A. Worsley, Xiaoyu Zheng
  • Publication number: 20180059541
    Abstract: According to various embodiments, systems, methods, and computer program products for click-chemistry compatible structures, additive manufacturing resins for forming the same, and method of formation of such structures and resins, as well as techniques for functionalizing click-chemistry compatible structures are disclosed. The inventive structures generally include a plurality of photo polymerized molecules structurally arranged according to a three-dimensional pattern, while surfaces of the structure are functionalized with one or more click-chemistry compatible molecules each having one or more click-chemistry compatible functional groups. The structures may be formed from single- or dual-component resins, each having unique synthetic pathways. The resulting structures may be functionalized for utility in a wide range of applications by leveraging click chemistry to further functionalize the structure with organic additives also compatible with click-chemistry reaction schemes.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Patrick Campbell, Eric Duoss, James Oakdale
  • Publication number: 20180059540
    Abstract: According to several embodiments, a composition of matter includes: a three-dimensional structure comprising photo polymerized molecules. At least some of the photo polymerized molecules further comprise one or more protected click-chemistry compatible functional groups; and at least portions of one or more surfaces of the three-dimensional structure are functionalized with one or more of the protected click-chemistry compatible functional groups. An additive manufacturing resin suitable for fabricating a click-chemistry compatible composition of matter includes: a photo polymerizable compound; and a click-chemistry compatible compound.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Patrick Campbell, Eric Duoss, James Oakdale