Patents by Inventor James P. Glass, Jr.

James P. Glass, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6692711
    Abstract: Sour natural gas is processed to remove the sulfur compounds and recover C4+/C5+ hydrocarbons by scrubbing the gas with an amine solution to remove most of the sulfur, followed cooling the gas to remove C4+/C5+ hydrocarbons and more sulfur compounds as liquid condensate to produce a gas having less than 20 vppm of total sulfur. The condensate is sent to a fractionator to recover the C4+/C5+ hydrocarbons. The sulfur and hydrocarbon reduced gas is contacted first with zinc oxide and then nickel, to produce a gas having less than 10 vppb of total sulfur which is passed into a synthesis gas generating unit to form a very low sulfur synthesis gas comprising a mixture of H2 and CO. This synthesis gas is useful for hydrocarbon synthesis with increased life of the hydrocarbon synthesis catalyst and greater hydrocarbon production from the hydrocarbon synthesis reactor. Contacting the synthesis gas with zinc oxide further reduces the sulfur content to below 3 vppb.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: February 17, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Dennis G. Alexion, Robert B. Fedich, John C. Wilbur, James H. Taylor, Jr., James P. Glass, Jr., Geoffrey R. Say, Richard P. O'Connor
  • Patent number: 6168768
    Abstract: Sour natural gas is processed to remove the sulfur compounds and recover C4+/C5+ hydrocarbons by scrubbing the gas with an amine solution to remove most of the sulfur, followed cooling the gas to remove C4+/C5+ hydrocarbons and more sulfur compounds as liquid condensate to produce a gas having less than 20 vppm of total sulfur. The condensate is sent to a fractionator to recover the C4+C5+ hydrocarbons. The sulfur and hydrocarbon reduced gas is contacted first with zinc oxide and then nickel, to produce a gas having less than 10 vppb of total sulfur which is passed into a synthesis gas generating unit to form a very low sulfur synthesis gas comprising a mixture of H2 and CO. This synthesis gas is useful for hydrocarbon synthesis with increased life of the hydrocarbon synthesis catalyst and greater hydrocarbon production from the hydrocarbon synthesis reactor. Contacting the synthesis gas with zinc oxide further reduces the sulfur content to below 3 vppb.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: January 2, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Dennis G. Alexion, Robert B. Fedich, John C. Wilbur, James H. Taylor, Jr., James P. Glass, Jr., Geoffrey R. Say, Richard P. O'Connor
  • Patent number: 6103206
    Abstract: Very low sulfur content hydrocarbon gas is achieved by sequentially contacting the gas first with zinc oxide and then with nickel metal. This has reduced the total sulfur content of natural gas feed for a fluid bed syngas generator to less than 0.1 ppm and has resulted in greater syngas productivity. A zinc oxide guard bed downstream of the syngas generator reduces the total sulfur content of the syngas to less than 10 vppb and preferably less than 5 vppb. This very low sulfur content syngas is used for sulfur sensitive processes, such as hydrocarbon synthesis. The process is especially useful for natural gas which contains H.sub.2 S, COS, mercaptans and other sulfur bearing compounds.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: August 15, 2000
    Assignee: Exxon Research and Engineering Co
    Inventors: James H. Taylor, Jr., James P. Glass, Jr., Geoffrey R. Say, Richard P. O'Connor
  • Patent number: 5882614
    Abstract: Very low sulfur content hydrocarbon gas is achieved by sequentially contacting the gas first with zinc oxide and then with nickel metal. This has reduced the total sulfur content of natural gas feed for a fluid bed syngas generator to less than 0.1 ppm and has resulted in greater syngas productivity. A zinc oxide guard bed downstream of the syngas generator reduces the total sulfur content of the syngas to less than 10 vppb and preferably less than 5 vppb. This very low sulfur content syngas is used for sulfur sensitive processes, such as hydrocarbon synthesis. The process is especially useful for natural gas which contains H.sub.2 S, COS, mercaptans and other sulfur bearing compounds.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: March 16, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: James H. Taylor, Jr., James P. Glass, Jr., Geoffrey R. Say, Richard P. O'Connor
  • Patent number: 5868922
    Abstract: A FCC process in which spent catalyst is stripped of hydrocarbon in a stripping zone prior to entering the regenerator. In order to maximize the amount of strippable hydrocarbon removed in the stripping zone with minimal use of stripping gas, a sample of spent catalyst is removed prior to entering the regenerator. The spent catalyst is analyzed for strippable hydrocarbon by conducting the sample to a heated catalyst collection vessel, evacuating the catalyst, collecting the gases from the collection vessel and analyzing the gases for amount of strippable hydrocarbon on the spent catalyst.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: February 9, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: James P. Glass, Jr., George A. Swan
  • Patent number: 5863417
    Abstract: A FCC process in which spent catalyst is stripped of hydrocarbon in a stripping zone prior to entering the regenerator. In order to maximize the amount of strippable hydrocarbon removed in the stripping zone, a sample of spent catalyst is removed prior to entering the regenerator. The spent catalyst is analyzed for strippable hydrocarbon by conducting the sample to a heated catalyst collection vessel, stripping hydrocarbon from the catalyst using an inert stripping gas, oxidizing the gasses from the collection vessel to carbon dioxide and water, and measuring the amount of carbon dioxide and/or water which amount of carbon dioxide and/or water can be correlated to the amount of strippable hydrocarbon on the catalyst sample.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: January 26, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Richard A. Demmin, James P. Glass, Jr.
  • Patent number: 4618481
    Abstract: An alkaline absorbent composition comprising a severely hindered amino compound and an amine salt is provided. A process for the removal of H.sub.2 S from fluid mixtures using this absorbent composition to produce a very low level of H.sub.2 S in the treated fluid is also provided. The process is also suited for the selective removal of H.sub.2 S from fluid mixtures comprising H.sub.2 S and CO.sub.2.
    Type: Grant
    Filed: August 30, 1985
    Date of Patent: October 21, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Fred J. Heinzelmann, Noah S. Rothblatt, James P. Glass, Jr., Geoffrey R. Say, George R. Chludzinski, Guido Sartori, W. S. Winston Ho
  • Patent number: 4272565
    Abstract: A finish skirt redistributes finish along the surface of the finish roll, providing extra finish to the yarn wound on the second bobbin in tandem winding, compensating for finish blotted off on the bobbin collecting the first yarn.
    Type: Grant
    Filed: November 23, 1979
    Date of Patent: June 9, 1981
    Assignee: Monsanto Company
    Inventor: James P. Glass, Jr.